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Abstract

We consider the task of learning hidden Markov models (HMMs) when only partially
(sparsely) labeled observation sequences are available for training. This setting is mo-
tivated by the information extraction problem, where only few tokens in the training
documents are given a semantic tag while most tokens are unlabeled. We first describe
the partially hidden Markov model together with an algorithm for learning HMMs from
partially labeled data. We then present an active learning algorithm that selects “diffi-
cult” unlabeled tokens and asks the user to label them. We study empirically by how
much active learning reduces the required data labeling effort, or increases the quality of
the learned model achievable with a given amount of user effort.

1 Introduction

Given the enormous amounts of information available only in unstructured or semi-structured
textual documents, tools for information extraction (IE) have become enormously important
(see [6, 5] for an overview). IE tools identify the relevant information in such documents and
convert it into a structured format such as a database or an XML document [2]. While first
IE algorithms were hand-crafted sets of rules (e.g., [9]), researchers soon turned to learning
extraction rules from hand-labeled documents (e.g., [10, 12, 8]). Unfortunately, rule-based
approaches sometimes fail to provide the necessary robustness against the inherent variability
of document structure, which has led to the recent interest in the use of hidden Markov models
(HMMs) [17, 14] for this purpose.

HMDMs are stochastic automata that move within a finite set of states, emitting an obser-
vation in each step. Fach state has a distinct distribution over the possible observations but,
in general, it is not possible to uniquely identify the state that a given observation was gener-
ated in. The well-known Viterbi algorithm finds the sequence of states that is most likely to
have generated a given observation sequence. The Baum-Welch algorithm, an instantiation
of EM, can be used to estimate the most likely HMM parameters given a collection of obser-
vation sequences. Speech recognition [11] and computational biochemistry [1] are well-known
applications of HMMs.

(Non-hidden) Markov model algorithms that are used for part-of-speech tagging [3] and for
information extraction [14] require each observation (i.e., token) of the observation sequences
(documents) used for training to be labeled with the state (corresponding to a part of speech)
in which it was generated. In this case, as the state is not hidden, finding the MM parameters
is a simple probability observation problem.



In the information extraction problem, some tokens of the example observation sequences
(those which are to be extracted) are labeled by the user, the remaining tokens are not. In
order to be able to exploit the labeling information and yet be able to handle the unlabeled
tokens, we propose the partially hidden Markov model (PHMM) for this task.

The paper is organized as follows. We introduce our terminology in Section 2, and present
the partially hidden Markov model with our modified forward-backward and Baum-Welsh
algorithms in Section 3. In Section 4, we discuss our active learning procedure; we present
our results in Section 5. Section 6 concludes.

2 Preliminaries

Hidden Markov models (see, [15] for an introduction) are a very robust statistical method for
analysis of temporal data. An HMM A\ = (7, a, b) consists of finitely many states {S1,..., Sy}
with probabilities m; = P(g = S;), the probability of starting in state S;, and a;; = P(qi1 =
Sjlg: = S;), the probability of a transition from state S; to S;. Each state is characterized
by a probability distribution b;(O:) = P(O¢|g: = S;) over observations. In the information
extraction context, an observation is typically a token. The labels X; correspond to the n
target states Si,...,S, of the HMM. Background tokens without label are emitted in all
HMM states Sp+1,.--,Sy which are not one of the target states.

We might, for instance, want to convert an HTML phone directory into a database using
an HMM with four nodes (labeled name, firstname, phone, none). The observation sequence
“John Smith, extension 7343” would then correspond to the state sequence (firstname, name,
none, phone).

HMM algorithms are described in terms of some recursively computable probabilities.
We briefly describe some elements of these algorithms (those that we need for our learning
algorithm in the next section) and refer to [15] for a more detailed discussion. (i) = P(g; =
Si, O1,...,0|A) is called the forward variable and quantifies the probability of reaching state
S; at time t and observing the initial part Oq,...,O; of the observation sequence. Of course,
in this definition it is assumed that no information except for the observation sequence is
given about the state.

Bi(i) = P(O¢41 ... Oplgs = Si, A) is called the backward variable and quantifies the chance
of observing the rest sequence O;41,...,Or when we are in state S; at time ¢. oy (i) and S;(i)
can be computed recursively by the forward-backward procedure (see [15]).

v:(3) = P(q: = S;|O, A) is the probability of being in state S; at time ¢ given observation
sequence O = (O1,...,07); 7 can easily be calculated from « and 8. Using the forward
backward algorithm we can determine the state that are most likely (maximize (7)) given
an observation sequence O, and thus “apply” an HMM with known parameters A to a new
observation sequence O.

The Baum-Welsh algorithm can be used to estimate the most likely model parameters
given a set of observation sequences O = {O4(s),..., Ogi?}. In the standard HMM setting
(e.g., in speech recognition), only observation sequences but no corresponding states are given.
In the standard Markov model setting (e.g., in part-of-speech tagging), the state sequences
that corresponds to these observation sequences are known. By contrast, in the setting that
we study in this paper, a labeling function is known, that defines, for each observation, a
set of possible states. For any observation, this set can contain one (part-of-speech tagging),
some, or all states (speech recognition).



In the information extraction problem, some tokens are typically attached a semantic tag;
the state of these tokens is uniquely determined. Other tokens are marked as “background”,
and it is known that these tokens have not been generated in one of the “target” states, but
any background state is possible. Token can also be left unmarked which says nothing about
their state.

Note that the problem of learning from partially labeled observation sequences is sub-
stantially different from both learning from unlabeled and learning from completely labeled
documents and no known HMM learning algorithm can be applied. The Baum-Welch algo-
rithm that learns from unlabeled documents does not map the observations that are to be
extracted to any particular target state which is crucial for information extraction. Simple
probability estimation used for (non-hidden) Markov models cannot be applied because the
state corresponding to the unlabeled observations is not known.

3 Partially Hidden Markov Models

What is needed to adapt the Baum-Welch procedure to partially labeled data? By looking at
the parameter re-estimation formula used in the algorithm, we see that it centrally depends
on being able to estimate the probability of being in state S; at time ¢ and in state S; at time
t + 1, given the observations and the model:

§(1,7) = Plge = Sisqt41 = S5 | O, A) (1)
Let us first define the set o; of states in which observation O; could have been generated.
Y = (o1,...,07); 0;C{1,...,N} (2)

(3)

o¢ is given by the labels of a training document. When an observation O; is labeled with a
unique state in which it must have been generated, then o; contains that single state. When
O, has no label, then o; contains all possible states.

The forward-backward algorithm is used to determine the values of the variables ay(),
B(7), and (7). We will first show we can modify the definitions of these variables and the
algorithm to take partial labeling information into account. Our considerations lead to the
new “backward-forward-backward” algorithm.

We first have to introduce a new set of probabilities 7 not found in the standard setting for
unlabeled data. (i) is the probability of observing the remaining labeled states, beginning
at step t, given that we are in state S; at time ¢ and given the model (Equation 4).

Tt(i) ZP(O't_H,...,UT |qt:Si,)\) (4)
The following lemma shows how to compute 7.
Lemma 1 (Computation of 7) Given an HMM with parameters A, observations O =
O1,...,07, and corresponding possible states ¥ = (o1,...,07), for any 1 < t < T, and
1 <4< N, we can compute 17,(i) = P(0t41,---,07 | ¢t = Si, A) as given by Equations 5 and
6.
(i) = 1 (5)
(@) = ) mi)ay (6)

JETL4+1



Proof. (a) Base case. Note that ¢ = T — 1 is actually the base case as 7p(7) is not a
proper probability.

P(or|gr—1 = Si,A\) = P(or|gr—1 = Si, A) (7)
> Plgr = Sjlgr 1 = Si, ) (8)
jEor
= > aij= Y m(j)ai; 9)
jEoT j€oT

gr lies in o when it is one of the states j € op (Equation 8). (¢r = Sjlgr—1 = Si, A) is just
the transition probability a;;; since 77 (%) is defined to be 1 (Equation 5), we can rewrite the
term in the recursive form of Equation 6.

(b) Inductive case. In Equation 11 we sum over all next states g;+1. Note that P(gi+1 =
S, 0t+1,...) must be zero if j & o411, so we drop those terms in Equation 12. Now, P(g;+1 =
Sj,0t4+1,...) = Plgi41 = Sj,...) because S; is known to lie in o441 (Equation 12). We
factorize the transition probability in Equation 13; the residual has the required recursive
structure (Equation 14).

Tt(’i) = P(O't—f—l, s, aT | qr = SZ,A) (10)
N
= Y P(gr11= 55,041,507 | g = Si, A) (11)
7j=1
= Z P(qt—f—l :Sj,O'H_Q,...,UT | qt :SZ,A) (12)
JEOt41
= Y P(otg1,---,00 | g1 = Sjyqr = S, N Pqeer = Sjlae = Si, A) - (13)
JEOt41
= Z Tt+1(j)aij (14)
JEOL+1
O

Note that we can express P(X|A) in terms of 7 (Equation 16).

PP = Plow,....orl\) (15)
= Z P(oy,...,o7|q1 = SiA)m; = Z T1(8) 75 (16)
1€01 €01

We can now define and calculate the oy (i) variable.

Lemma 2 (Computation of o) Given a HMM with parameters A, and observations O =
O1,...,0r, with corresponding possible states 33, for any 1 <t <T, and 1 < j < N, we can
compute a(j) = P(qt = Sj,01,...,0¢ | 3, X) as in Equation 17 and 18.

N o= b o)
ai(j) = bij(O1)m; S a7
a1(f) = { Lico (at(")aw 71(1) )bJ(Ot—H) if je 0:t+1 (18)
0 otherwise



Proof. (a) Initialization: ¢ = 1. We factorize P(q1 = S;|2, ) in Equation 20. Under
the Markov assumption for observations, the residual is just the output probability b;(O)
(Equation 21). In Equation 21 we also apply Bayes’ equation. In Equation 22 we apply
Equation 16.

ai(i) = P(O1,q1 = Si|%,A) (19)
= P(Oilg1 = Si, Z,\)P(q1 = Si[2, ) (20)
(%)
= b P(X|g = Si, A 21
. (2
= bi(0)71() =5 1(0) : (22)
jeor TL(I)T;

(b) Recursive case. In Equation 24 we sum over all previous states q;. P(q = Si,qi+1 =
Sj, ... |8, A) is zero for ¢; & oy, so we drop these terms from the sum in Equation 25. In

Equation 26 we split up the probability into three components: P(q; = Sj, O1,...,0{Z, \)
is just ay(z) (Equation 27); P(O¢t1|qi+1 = Sj,qt = Si, O1,...,0, 2, A) is, under the Markov
assumption for observations, the output probability b;(Os11). The residual (P(gi+1 = Sj|g; =
SiyO1,...,0,%,))) is broken up in Equations 29 through 31.

ar1(j) = Plas1 = Sj,Ola---,OtH\E,)\) (23)
N
= Y P(g = Si,qr41=5;,01,...,0¢11|%, \) (24)
=1
= Y P(g = Si,qr41 = 5j,01,...,0111|%, A) (25)
1€0t
= > P(g = 5i,01,--., 0%, N P(qs41 = Sjlar = Si, O1,..., 04, 5, A)
1€0t
P(O¢y1lgi+1 = Sj, gt = Si,01,---, 01,5, A) (26)
= Y u(i)P(ge1 = Sjlae = i, 01, .., O, B, )b (Og41) (27)
1€0t
Sico (@t()ai ™) bi(Oi) i j € o1
— 1€0¢t v e (d) J . (28)
0 otherwise
In Equation 29, we apply Bayes’ equation, moving oyy1,...,07 to the front and qy1 =
S; into the conditional part. Under the Markov assumption for transitions, P(gi+1 =
Sijlgt = 8i,01,...,04,01,...,04,A) is just a;; (Equation 31).  P(opy1,...,07|¢p =
SiyO1,...,04,01,...,01,A) equals 74(7) according to the definition of 7. Let us now look

at P(0t41,---,07|qt41 = Sjyqt = Si,01,...,04,01,...,04, ). We have g1 = S in the
conditional part and o;y1 as random variable. If ¢;11 = S; € o441, the this probabil-

ity must be zero; if we have ;41 = S; with j € o041, then we can drop o041 from
the left hand side of this probability because it is true with certainty. We then obtain
P(oty2,... 071|941 = Sj,q¢ = Si,01,...,04,01,...,04, A) which equals 7,41(j). Hence, we

arrive at Equation 31. If we apply this result to Equation 27, we obtain Equation 28 which
completes the proof.

P(gv1 = Sjlat = Si; O1,-..,04,%,0) (29)
= P(Ut+1a"'7UT|qt—|—1 = Sj,Qt = Siaola"'aotaala'"aata)‘)



P(qt—l—l = Sj‘qt = Siaola"' 7Otao-la"'ao-t7>‘)

30

P(JH—la"'aaT‘qt:S’iaola"'aOtaUla"'7Uta/\) ( )

_ %)ﬂazj if j € 041 31)
0 otherwise

|

Lemma 3 (Computation of 8) Given a HMM with parameters X\, and observations O =
O1,...,07, with corresponding possible states X, for any 1 <t < T, and 1 <i < N, we can
compute (i) = P(O¢t1,...,07 | ¢¢ = Si, 2, A) as in Equations 32 and 33.

pr(i) = 1 . (32)
Bli) = Y (ﬁm(j)aiﬂ*—l@) b;(Or1) (33)

JETL11 'R(”

Note that (i) is undefined when i & oy (because then 14(i) = 0). Intuitively, the corresponding
probability of observations O¢y1,...,0r when in an impossible state q¢ € o should not be
defined.

Proof. (a) Again, t = T — 1 is the base case as Sr(i) does not possess a random
variable and is not a probability. In Equation 35 we sum over all possible final states S;.
We marginalize P(Or|gr = Sj,qr—1 = S;, X, A) (which, under the Markov assumption for
observations is b;(Or)) in Equation 36. The residual P(gr = Sjlgr—1 = Si,01,...,07, ) is
broken up in Equations 39 and 41.

Br-1(i) = P(Or,|gr-1 = 8Si, %, A) (34)
= > P(Or,qr = Sjlgr-1 = 8, %, )) (35)
jEoT
= Z P(OT‘qT = Sj,QT—l = SzaE,A) ) P(QT = Sj'QT—l = SZ,Z,)‘) (36)
jEor
= Z bJ(OT) ' P(qT = Sj|qT—1 = Siaala -- 0T, A) (37)
jEoT
= ¥ () 2 by0m) (35)
jEoT TT*I(IL)

In Equation 39 we apply Bayes’ rule. We known that P(qr = Sj|gr—1 = S, 01,...,07,)) =1
because we are summing only S; with j € o7. Under the Markov assumption for transitions,
P(gr = Sjlgr—1 = Si,01,...,07-1, ) = a;j. Applying this to Equation 36 and introducing
Br(j) as additional factor (defined to be 1) leads to the desired result in Equation 38.

P(gr = Sjlgr—1 = Si,01,...,01,\)
= P(UT‘QT = Sj>QT—1 = Siaola v 70'T—17A)
P(gr = Sjlgr—1 = Si,01,...,07-1, )

39
P(or|gr-1 = Si,01,...,07-1, ) (39)
G
= P(orlgr = Sj,qr-1 = Siy01,...,07-1, ) Tlej(’L') (40)
77(j)
= iy 41
Qg TTfl(i) ( )



(b) Recursive case. We sum over all possible successor states S; in Equation 43 (the summands
for j & o441 are zero). Now we marginalize P(Oyta,...,07|01,q41 = Sj,q = Si, 5, A)
(which is f;41(j) under the Markov assumption) and P(Oy11|g41 = Sj, ¢ = S5, 8, A) (which
is b;(Oy+1) under Markov assumption). The residual of Equation 45 is broken up in Equations
47 through 49.

Bi(i) = P(Ogy1,...,0r|g = Si, 8, A) (42)
= Y P(Oy1,---,0r,q41 = Sjlgs = Si, T, A) (43)

JETt+1

= Y P(Oty2,.-,07|0p1,q141 = Sjy g = i, 5, A) -

JEOt+1
(Ot+1\(h+1 = Sj,Qt = Si, 3, ) - P(gt+1 = Sjlgr = Si, 5, ) (44)
= Y Bis1(h) - 5/(O41) - Plars1 = Sjlat = Sis01,-.., 01, A) (45)

JETt41

T

= > (5t+1 tﬁ() )) i (Ot41) (46)

JETL4+1
Again, we apply Bayes’ equation in Equation 47. Since j is known to be in
o, P(0i41,...,07|...) equals P(oi2,...,0r|...) (Equation 48). P(g41 = Sjl¢¢ =
Si,01,...,0¢ A) equals a;; under the Markov assumption; the denominator equals 74(i). The

resulting Equation 49 takes us from Equation 45 to Equation 46.

P(qi+1 = Sjlgr = Siyo1,-..,01,A)

= P(O't—i-l, e ,0T|qt+1 = Sj,qt = SZ',O'l, e ,O’t,A)
P(qi41 = Sjlat = Si,01,...,04,N) (47)
P(Ut—l—la s ,UT|Qt = Siaol’ v aUta)‘)
Qs
= P(at+27"' 7UT|Qt+1 = Sjaqt = Siaala"' 70t’)‘) Zj- (48)
71(7)
Te11(J)
o 49
i 71 (1) 49)
O

Lemma 4 (Computation of vy) Given a HMM with parameters A and observations O =
O1,...,01 with corresponding possible states 3, for any 1 <t < T, and 1 <i < N, we can
compute v(1) = P(q: = Si | O, %, ) as in Equation 50.

L oa()Bi) _ au(i)Be(d)
’Yt('ll) — P(O|2,)\) — E]’EO—T aT(’i) (50)

Proof. In Equation 52 we convert the conditional into the joint probability. We
marginalize P(q; = S;, O1,...,0%, ) in Equation 53. The Markov assumption takes us to
Equation 54. The definitions of « and (3 result in Equation 55.

(i) = Plg = Si|0,%, ) (51)
P(qt = SZ', 01, ey OT|Z, A)

2

PO, \) (52)



P(qt = SiaOla"'7Ot|27)\)P(Ot+la"'7OT|qt = S’iaola"'aOtaZaA)

- PO ) (53)
_ P(t=5i,01,--, 0%, ) P(Os1; ..., Orlg = 8;, , ) (5)
P(O|%, )
_ a()B(9)
a I&Cﬂiik) (55)
(56)
O

We are now ready to present the new backward-forward-backward algorithm (Table 1)
for computing the a, B, and y variables, given an HMM A, an observation sequence O =
O1,...,07, and a sequence of possible states ¥ = o1,...,0p. Table 2 describes the known
forward-backward algorithm, a special case of backward-forward-backward where no labels
(i.e., constraints on the possible states for each observations) are available. This is the typical
case when a model A is applied to extract information from a new, unlabeled document,
while backward-forward-backward will be called by the EM algorithm during training, when
partially labeled documents are available.

Table 1: Backward-Forward-Backward algorithm

1. Input Observation sequence (O1,...,Or), possible corresponding states o1, ...,or, HMM .
2. For all i, Let 71 (i) = 1 according to Equation 5.

3. (first backward step) For ¢ =Tj,...,1, For all i = 1,..., N Determine 7;(¢) according to
Equation 6.

4. For all i, Determine a4 (i) according to Equation 17; Determine (3 (i) according to Equation
32.

5. (forward step) For allt =1...T and ¢ = 1... N Determine «a;;1(j) according to Equation
18.

6. Let P(O|Z,\) = SN | ar(i)

7. (second backward step) For all t = T'...1 and ¢ = 1...N Determine (;(i) according to
Equation 33 and determine (i) according to Equation 50.

Table 2: Forward-Backward algorithm

1. Input Observation sequence (Oy,...,Or) without labels, HMM .
2. Forallt=1,...,T,i=1...,N, Let 7(i) = 1.

3. Enter the backward-forward-backward procedure (Table 1) at step 4. Only one forward and one
backward iteration are thus required.

Note that it is possible but not necessary to adapt the d;(i) variable required to execute
the Viterbi algorithm. The Viterbi algorithm is not required during training; it is used to
find the most likely sequence of states of an already given HMM that corresponds to a new



observation sequence. In contrast to the training data, the observation sequences encountered
during the application phase will usually not contain any labels.

In order to adapt HMM parameters from a given set of partially labeled observation
sequences, we need to calculate the variable &(7,j) which quantifies the probability that a
transition from S; to S; has occurred at time ¢. This variable is crucial to calculating the
transition probability from S; to S;.

Lemma 5 (Computation of ¢) Given a HMM with parameters X, and observations O =
O1,...,07 with corresponding possible states 33, for any 1 <t <T,1<i<N,1<j<N,
we can compute &(1,7) = Plgr = Si A1 = S; | 0,3, X) as in Equation 57.

(1)a;6; (Ot4+1)Bt+1(NTe4+1(G) ¢ .
Gy =1 T poEany o Hi€oni€an (57)
0 otherwise

Note that P(O | £,)) = XN ar(i).

Proof. First, we convert the conditional into a joint probability in Equation 59. In Equa-
tion 60 we first marginalize P(O1, ..., O, q = Si|E, A) (equals ay (7)), then P(gi+1 = Sjlgr =
Si, 01, Ceey Ot, Z, A), next P(Ot+2, ceey OT|(]t = SZ’, qi+1 = Sj, 01, ceey Ot_|_1, E, )\) (equals
Bt+1(4)), and finally P(Ory1lgr = Sisqev1 = 85, 015,01, 01,07, 5,A) (equals bj(Ory1)

remains. Then, in Equation 62, we apply Bayes’ equation. Note that P(o¢t1,-.-,07|q+1 =
Sj,q¢ = Si,01,...,04,A) equals zero if j & o441, it is undefined when i ¢ oy; other-
wise and under the Markov assumption it equals P(oyi2,...,07|¢+1 = S;,A) which in

turn equals 7441(7). In Equation 63, we also refer to the Markov assumption to identify
P(qt+1 = Sjlgt = Si,01,...,01,A) as ajj.

ét('&,]) = P(Qt = Siaqt—l—l = SJ ‘ O,Z,A) (58)
_ Pgr=Si,qt41 =5, 0| 5, A)
- P(O|Z, 7) (59)

= P(Ogp1lge = Siyqe41 = S5, 01,...,04, 04,01, 5, A) -
P(OH—?) s aOqut = SiaQH—l = Sjaola .- 'aOt—|—laEa>‘) .
P(Ol,...,Ot,qt = SAZ,A)

P(qt+1 = S]|qt = Si; Ol; ... 7Ot721 A) P(O|Z A) (60)
a¢(1)bj (Os41) Be+1 ()

= IJ-"(O|§J,)\)+ P(gi+1 = Sjlgr = Siyo1,--.,01, ) (61)
a4(1)b; (O1) Bey1(4)

= p(0|g,)\) P(Ut+1,...,UT|CIt+1 :Sj;Qt:Si,O'l,...,o't’)\) .
P(qt‘i'l = S]|qt = Siao-la-.- 70-t7>\)P(0-t—|—1,. .. 70T|qt = Si’o-l’... 70t7)\) (62)

; 7’,.b. o) ] ] . . .
B { at(i)ai; ](Pt(-l(-)l‘)ﬁt-sl(])n‘l‘l(.j) if i € 0y, € ops1

zA ) (63)
0 otherwise

a

Given the above lemmata, we have the main building blocks for our new learning algorithm
which works with partially labeled observations. Table 3 describes our Baum-Welch algorithm.
Baum-Welch is an instantiation of the EM algorithm. In the E-step, the algorithm uses the
current model A to determine the probability +;(i) of being in each state S; at time step ¢



Table 3: Baum-Welch Algorithm for partially labeled observation sequences

1. Input Set O of m observation sequences O = {(0§1), e, O% )y ey (OY”’, e, O(TZ))} Possible
corresponding states {((TP), . U(Tss )}. Number of states N. Optionally an initial parameter set
by

2. If no initial model A is provided Then initialize (7, a,b) at random, but making sure that
Yiymo =1, Y,bio) =1 (for all i), Y)* a;; = 1 (for all ), and that 0 < p < 1 for all
probabilities p € {m,a, b}.

3. Repeat

(a) (E-Step) For all s =1...m Call the backward-forward-backward procedure to calculate
the 7. (5), a{* (i), B (3), and ~* (i).

(b) Fors=1...m,t=1...Ts—1,i € 0y and j = 1,..., N, Determine ft(s)(i,j) according
to Equation 57.

(c) (M-Step) Let m; =L > v (i) (expected frequency of starting in state S;).

m
m Tg—1 8) . .
D D DN IR CY)
m Ts—1 (s),.
o s=1 Zt=1 Tt (z)

tions from S; to S; over number of transitions from S;).

(d) Fori=1...N,j=1...N Let a;; = (expected number of transi-

7 (i)-86(0{ =0) .
ZTS NO (Z)
t=1

expected frequency of observing o when in state S;; § returns 1 if 0% = 0, 0 otherwise).
¢

Ly P

(e) For i = 1...N and all observation values o Let b;(0) = .-

4. Until the probabilities a;; and b;(O;) stay nearly constant over an iteration.

5. Output parameters A = (7, a, b).

(using the forward-backward procedure). In the M-step, the algorithm uses the calculated
state probabilities to estimate the transition probabilities.

Our algorithm has two desirable properties. Like the regular Baum-Welch algorithm it
converges to an (at least local) optimum in the parameter space. When the document is com-
pletely labeled, it reaches stability after the first iteration and behaves like the straightforward
parameter estimation procedure for (not hidden) Markov models.

Theorem 1 (Correctness) of the class from which a HMM is to be learned. Given obser-

vations O = {O(s) = 055), . ,ng)}, partially labeled according to £, the algorithm in Table 3
will converge to an estimated set of parameters X that locally mazimizes P(O | £, \).

Proof. Follows directly from the original proofs of Baum and Welch using our modified
definition of &. O

4 Learning HMMs Actively

Unlabeled documents can be obtained very easily for most information extraction problems;
only labeling tokens in a document imposes effort. An active learning approach to utilizing
the available amount of user effort most effectively is to select, from the available unlabeled
observations, the “difficult” ones of which to know the labels that would be most interesting.
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When our objective is to minimize the probability of assigning a false state to an obser-
vation, then a Bayes-optimal extraction algorithm has to label each observation Oés) with
the tag X; that maximizes P(S;|0®),\) = 7,58) (1) (or none, if i > n). We deviate from
this optimal strategy when our parameter estimates )\ differ from the true parameters A
such that some state S; seems to be most likely although state S; really is most likely
(max; P(g: = Si|O, \) # max; P(¢: = S;|O, X)) We can see the difference between the proba-
bility of the most likely and that of the second most likely state as the confidence of the state
given O. When such confidence values or margins can be defined for instances, then we often
see empirically that instances with low margins are most relevant to adjust the hypothesis
parameters (e.g., [18, 4]).

In analogy, we define the margin M (g O, \) of the observation at time t as the difference
between the highest and second highest probability for a state (Equation 65).

M(@l0,3) = wax{P(a = 50,3} - max{P(a: = §|0,\)} (69

= max{y(i)} — max{n(j)} (65)
Intuitively, the margin can be seen as quantifying how “difficult” (low margin) or “easy”
(large margin) an example is. Our active HMM learning algorithm (Table 4) first learns an
initial model A1 from a set of partially labeled observation sequences. It then determines
the margins of all observations and starts asking the user to label those observations which

have a particularly low margin. The Baum-Welch algorithm is restarted, using the previous
parameters Ax_1 as initial model and adapting A to the new data.

Table 4: Active Revisi £ hidden Markoy Model

1. Input Set O of m Sequences O = {(Ogl), ... ,O%)), e, (Ogm), ... ’O(TTn))} of observa-

tions; Labeling function [ : Ogs) — {S1,...,Sn, unknown, nolabel }; Number of states
N; query parameter n,.

2. Call the Baum-Welch algorithm to determine initial parameters A;.
3. For £k =2...00 Repeat

(a) For s =1...m Call the forward-backward algorithm.
(b) For s=1...mand t =1...T; Let M(g|0®)) = max;{y;(i)} — max;i{v:(7)}-

(c) Ask the user to label the n, unlabeled observation O (I(O'*)) = nolabel) with
smallest margin M (g;|O®®)). Update the labeling function I.

(d) Estimate the new model parameters A\, using the Baum-Welch algorithm with
initial model Ag_1.

4. Until the user gets tired of labeling data.

5. Return HMM parameters \; = (7, a, b).
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5 Experiments

For our experiments, we generated HMMs with variable numbers of background and target
states at random. We used these HMMs to generate unlabeled observation sequences; we
label a number of initial observations drawn at random. We then study how the error de-
velopes with the number of additional labels added to the observation sequences according
to three strategies. The “random” stragegy is to label randomly drawn observations; the
“margin” strategy is to label “difficult” observations with smallest margins; this corresponds
to our active hidden Markov model. As a control strategy (“large margins”), we also try
selecting “easy” observations that have the largest margins. If “margins” is really better than
“random”, we expect “large margins” to perform worse.

0.6 T T T 0.14 0.096
0.55 random —+—
0.5 margins ---><-- 0.135 0.094
0.45 large margins ---*--- 0.13 0.092
2 2 0125 2 009
o @ @
0.12 0.088
0.115 LTI, o 0.086 v
. 0.11 L L L L 0.084 L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
(a) labeled tokens (b) labeled tokens (c) labeled tokens
0.4 T T 0.19 0.16 T T T
random —+— 0.18 0.155 | ., random ——
0.35 % margins ------ 0.17 0.15 %, margins ---x---
0.3 1% large margins ---%--- 0.16 0.145 - rg’%&;{glns e
5 5 015 5 014f Xow %
5 0.25 T 014 @ 0.135 -
0.2 0.13 0.13 |
0.12 0.125
0.15 0.11 012 |
0.1 0.1 0.115 =
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
(d) labeled tokens (e) labeled tokens (f) labeled tokens
0.28 T T T 0.18 T T T 0.17
0.26 random —+— 017 random —+— 016 I
0.24 F margins ---x--- 016 - % margins ---x--- -
022 large margins ---*--- | 0-15 Rige margins ---*--- 0.15
5 o02f R 5 o g 014
= £ 014 =
¢ 018 | b % 013 o 013 |
0.16 - B B
0.14 E 0.12 - 012
0.12 0.11 A 0.11
0.1 . L L L 0.1 0.1
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
(g) labeled tokens (h) labeled tokens (i) labeled tokens

Figure 1: Error rate of active and regular learning over number of labeled observations. (a)-
(c), easy HMM; initial sample contains (a) no (b) 80 (c) 160 labeled observations drawn at
random. (d)-(f) medium size HMM; initial sample with (d) no (e) 80 (f) 160 initial labels.
(g)-(i) large HMM; (g) no (h) 80 (i) 160 initial labels.

We used three different HMM sizes. The “easy” HMM consists of one background and two
target states. Each state emits three out of 20 observations with randomly drawn probabilities.
We generated 50 sequences of 20 initially unlabeled observations. The “medium size” HMM
possesses 10 nodes, and the “large” HMM consists of 15 states. The curves in Figure 1 are
averages over 50 leaning problems. The initial sample contains only unlabeled observations
(Figures 1la for the easy, 1d for the medium size and 1g for the hard learning problem), labels
of 80 (Figures 1b, le, and 1h, respectively) and 160 observations (Figures 1lc, 1f, and 1i)
drawn at random.
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In Figures 1a, 1d, and 1g we see a slight but significant advantage of random selection of
observations over selecting observations with small margins. Using only difficult observations
from the beginning is not beneficial on average. In the later phase of learning, observation
selection by small margins gains a small advantage. The benefit of the margin strategy
becomes more clearly visible, when the initial sample contains the labels of 80 (Figures 1b,
le, and 1h) or 160 (Figures 1c, 1f, and 1i) observations drawn at random, and only from then
on observations with smallest margins are selected. For the small HMM learning problem
(when much unlabeled data relative to the problem complexity is available), the bottom
line error is reached after about 300 labels under the margin strategy and after 600 labeled
observations under the random strategy.

Using active learning with small margin examples after 70 initial random observations
seems to be most beneficial. In this case (Figure 1b), the base level error is reached after
less than 200 examples for active and after 1000 examples regular learning — i.e., five times
fewer labels are needed. Choosing only the most “easy” examples (large margins) is clearly
a bad strategy in all cases. Our experiments show that, at least for the classes of HMM that
we generated, using only difficult low-margin observations for learning from the beginning
results in higher error rates. However, when the training is started by labeling randomly
drawn observations and the active HMM chooses difficult low-margin observations after that
initial phase, then a significant improvement is achiever over regular HMMs that can result
in the sufficiency of many times fewer labeled examples.

6 Discussion and Related Work

An alternative, conditional hidden Markov model for information extraction has been de-
scribed by [14]. Instead of using the usual distributions a;; and b;(O;), the alternative model
uses a conditional probability P(g;+1|qs, O¢+1)- The conditional model is not generative any
more — i.e., it is not possible to determine P(O|)), or to draw observation sequences according
to some given .

In the generative model a;; and b;(O;) have to be estimated. That is |Q|? + |Q| x |O|
probabilities. By contrast, in the conditional model, |Q|?> x |O| probabilities have to be
estimated. Hence, fewer probabilities need to be estimated in the generative model but, in
the conditional model it may be possible to model some processes using fewer states.

Given a set of models {)\;} (e.g., describing different categories of web pages) and an
observation sequence O, in the generative model we can calculate the P(O|)\;) and thus use
HMMs for classification tasks. This idea seems promising because we can thus use information
that lies beyond the usual bag-of-words representation for text classification. This probability
cannot be determined in the conditional model.

Furthermore, it is not clear whether Viterbi and Baum-Welsh algorithms exist in the
conditional model, or whether they can only be approximated. Consider, for instance,
the definition of the forward variable « in the conditional model (Equation 66). We can
factorize ¢; as in Equation 67. The Markov assumption then takes us to (68). Unfor-
tunately, (68) is, in general, not equal to (69) which is equal to the recursive algorithm
that [14] propose for computation of the a. Equation 68 is only equal to Equation 69 if
P(g = Si|01,...,04,0441) = P(qe = Si|O1,...,0;) which is not covered by the Markov

assumption.

ar1(j) = Pgi+1 = Sj[01,. .., Op11) (66)
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A different way of seeing the derivation is the following interpretation in which the o4(i) are
conditioned on the entire observation sequence.

ar1(j) = Plg+1 = S;]0) (71)
N

= > Plg+1 = Sjlgs = Si, O)P(g = S;|0) (72)
=1
N

= Y P(gi+1 = Sjlae = Si, 0)au(3) (73)
im1

In this interpretation, the problem occurs only one step later. We now have to estimate
P(gi+1 = Sjlg: = S;,0) and, in order to make this problem tractable, a small time window
focused around Oy is considered.

P(qnew = Sjlqo1a = Si,0) = P(Gnew = Sj|qota = Sis Ok, - -, Op1k) (74)

Note that we now have a set of transition probabilities that are time dependent! We now
have to estimate an array of P(qnew|qoid, O) for each time step ¢ — or artificially assume that
the transition probability is constant. But this assumption is not covered by the Markov
assumption and not consistent with the update formula. This “bug” in the derivation of the
conditional « variable is reflected by the unsatisfactory empirical performance of conditional
MEMMs [13]. 7.

Conditional random fields are are also a promising approach to avoid the problems asso-
ciated with conditional Markov models. One problem of conditional random fields if the slow
convergence of the Improved Iterative Scaling algorithms. Empirical comparisons of HMMs
and CRFs would be interesting.

An alternative heuristic for selecting observation sequences (not, as in our approach,
observations) for labeling has been presented by [16].

A considerable restriction of the model discussed here is that the tagging takes place on
a token level — i.e., it is not possible to enclose a token sequence in (nested) tags. Only when
all tokens are labeled with a tag that corresponds to exactly one state, then cascaded Markov
models [3] solve this problem. For the more general case of partially labeled documents, the
hierarchical hidden Markov model [7] has to be adapted to partially labeled token sequences,
analogously to our adaptation of the standard hidden Markov model.
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