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ABSTRACT

Many discovery problems, e.g., subgroup or association rule
discovery, can naturally be cast as n-best hypothesis prob-
lems where the goal is to find the n hypotheses from a given
hypothesis space that score best according to a given utility
function. We present a sampling algorithm that solves this
problem by issuing a small number of database queries while
guaranteeing precise bounds on confidence and quality of so-
lutions. Known sampling algorithms assume that the utility
be the average (over the examples) of some function, which
is not the case for many frequently used utility functions.
We show that our algorithm works for all utilities that can
be estimated with bounded error. We provide such error
bounds and resulting worst-case sample bounds for some of
the most frequently used utilities, and prove that there is no
sampling algorithm for another popular class of utility func-
tions. The algorithm is sequential in the sense that it starts
to return (or discard) hypotheses that already seem to be
particularly good (or bad) after a few examples. Thus, the
algorithm is often even faster than its worst-case bounds.

1. INTRODUCTION

Even with discovery algorithms optimized for very large data
sets, for many application problems it is infeasible to pro-
cess all of the given data. In this case, an obvious strategy is
to use only a randomly drawn sample of the data. Clearly,
if parts of the data are not looked at, it is impossible, in
general, to guarantee that the results produced by the dis-
covery algorithm will be identical to the results returned on
the complete dataset. If the use of sampling is to be more
than a practitioner’s “hack”, sampling must be combined
with discovery algorithms in a fashion that allows us to give
the user guarantees about how far the obtained results dif-
fer from the optimal (non-sampling based) results. The goal
of a sampling discovery algorithm then is to guarantee this
quality using the minimum amount of examples.
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Existing research has concentrated primarily on discovery
problems where the goal is to select from a space of possible
hypotheses H one of the elements with maximal value of an
instance-averaging utility function f, or all elements with
an f-value above a user-given threshold (e.g., all association
rules with sufficient support) [5, 8]. With instance-averaging
utility functions, the quality of a hypothesis h is the average
across all instances in a dataset D of an instance utility
function finst.

Many discovery problems, however, cannot easily be cast in
this framework. Firstly, it is often more natural for a user
to ask for the n best solutions instead of the single best or
all hypotheses above a threshold (see e.g., [20]). Secondly,
many popular utility measures cannot be expressed as an
averaging utility function. This is the case, e.g., for all func-
tions that combine coverage and distributional properties of
a hypothesis, as popular in subgroup discovery. The task of
subgroup discovery [12] is to find maximally general subsets
of database transactions within which the distribution of a
focused feature differs maximally from the default probabil-
ity of that feature in the whole database. As an example,
consider the problem of finding groups of customers who are
particularly likely (or unlikely) to buy a certain product.

In this paper, we present a general sampling algorithm for
the n-best hypotheses problem that works for any utility
functions that can be estimated with bounded error. To
this end, in Section 2, we first define the n-best hypothe-
ses problem more precisely and identify appropriate quality
guarantees. Section 3 then presents the generic algorithm.
Our algorithm is a sequential sampling algorithm [19], in
the sense that it does not wait for a fixed number of ex-
amples that can be guaranteed to suffice even in the worst
case before starting the analysis. It starts to return (or dis-
card) hypotheses that already seem to be particularly good
(or bad) after a few examples. Thus, the algorithm is often
faster than its worst-case bounds. In Section 4, we prove
that many of the popular utility functions that have been
used in KDD indeed can be estimated with bounded error,
giving detailed bounds. For one popular class of functions
that cannot be used by our algorithm, we prove that there
cannot be a sampling algorithm at all. Owur results thus
also give an indication as to which of the large numbers of
popular utility functions are preferable with respect to sam-
pling. In Section 5, we evaluate our results and discuss their
relation to previous work.



2. APPROXIMA TING ~N-BEST HYPOTHE-
SESPROBLEMS

In many cases, it is more natural for a user to ask for the
n best solutions instead of the single best or all hypotheses
above a threshold. Such n-best hypotheses problems can be
stated more precisely as follows (adapted from [20], where
this formulation is used for subgroup discovery): Let D be
a database of instances, H a set of possible hypotheses, f
a quality or utility function on H mapping a hypothesis
and a database to a nonnegative number, and n, 1 < n <
|H| an integer, the number of desired solutions. The n-best
hypotheses problem is to find a set G C H of size n such
that there isno h' € H: h' ¢ G and f(h', D) > fmin, where
fmin = minhegf(h, D)

Whenever we use sampling, the above optimality property
cannot be guaranteed, so we must find appropriate alterna-
tive guarantees. Since for n-best problems, the exact quality
and rank of hypotheses is often not central to the user, it is
sufficient to guarantee that G indeed “approximately” con-
tains the n best hypotheses. We can operationalize this by
guaranteeing that there will never be a non-returned hypoth-
esis that is “significantly” better than the worst hypothesis
in our solution. More precisely, we will use the following
problem formulated along the lines of PAC (probably ap-
proximately correct) learning:

DEFINITION 1 (APPROXIMATE n-BEST HYPOTHESES).
Let D, H, f and n as in the preceding definition. Then let
3,0 <6 <1, be a user-specified confidence, and ¢ € R™
a user-specified mazimal error. The approximate n-best
hypotheses problem is to find a set G C H of size n such
that, with confidence 1 — 6, there is noh’ € H: k' € G and
f(h', D) > fmin + €, where fmin := minpec f(h, D).

In other words, we want to find a set of n hypotheses such
that, with high confidence, no other hypothesis outperforms
any one of them by more than e, where f is an arbitrary
performance measure. In order to design an algorithm for
this problem, we need to make certain assumptions about
the utility function f. Ideally, an algorithm should be capa-
ble of working (at least) with the kinds of utility functions
that have already proven themselves useful in practical ap-
plications. If the problem is to classify database items (i.e.,
to find a total function mapping database items to class la-
bels), accuracy is often used as utility criterion. For the
discovery of association rules, by contrast, one usually re-
lies on generality as primary utility criterion [1]. Finally,
for subgroup discovery, it is commonplace to combine both
generality and distributional unusualness, resulting in rel-
atively complex evaluation functions (see, e.g., [13] for an
overview).

In light of the large range of existing and possible future
utility functions, in order to avoid unduly restricting our al-
gorithm, we will not make syntactic assumptions about f.
In particular, unlike [5], we will not assume that f is a sin-
gle probability nor that it is based on averages of instance
properties. Instead, we only assume that it is possible to
determine a function A for a particular f that bounds the
probability of errors when computing f based on a sample,
and vanishes with increasing sample sizes. As we will show

in Section 4 below, finding such A is relatively straightfor-
ward for classification accuracy, and is also possible for all
but one of the popular utility functions from association rule
and subgroup discovery. More precisely, we define an error
probability bound function A for f as follows.

DEFINITION 2 (ERROR PROBABILITY BOUND). Let f be
a utility function, let h1 € H and ha € H be two hypotheses.
Let f1 := f(h1, D) denote the true utility of h1 on the entire
dataset, fi := f(h1,S) its estimated utility computed based
on a sample S C D of size m (fz,fg defined analogously).
Then A : IN xR x R — [0, 1] is an error probability bound

for f iff for any €,é
Prs[fi — f2 > &|fi — f2 < €] < A(m,e,8). (1)

Equation 1 says that A bounds the probability of drawing
a sample S (when drawing m transactions independently
and identically distibuted from D), such that the empirical
difference between two utility values appears overly large.
We will refer to f(h, S) as the measured, or empirical utility.
If, in addition, for any 4,0 < § < 1 and any ¢ there is a
number m such that A(m,¢,0) < § we say that A vanishes.
Note that it can be meaningful for € to be negative; in this
case, A bounds the chance that hi appears better on the
sample (fi1 — f2 positive) although h really is better (fi — fo
negative).

3. SAMPLING ALGORITHM

The general approach to designing a sampling algorithm is
to use an appropriate error probability bound to determine
the required number of examples for a desired level of con-
fidence and accuracy. When estimating a single probability,
Chernoff bounds that are used in PAC theory [10, 18] and
many other areas of statistics and computer science can be
used to determine appropriate sample bounds [17]. When
such algorithms are implemented, the Chernoff bounds can
be replaced by tighter normal or Student’s ¢-distribution ta-
bles.

Unfortunately, the straightforward extension of such ap-
proaches to selection or comparison problems like the n-best
hypotheses problem leads to unreasonably large bounds: to
avoid errors in the worst case, we have to take very large
samples to recognize small differences in utility, even if the
actual differences between hypotheses to be compared are
very large. This problem is addressed by sequential sampling
methods [4, 19] (that have also been referred to as adaptive
sampling methods [5]). The idea of sequential sampling is
that when a difference between two frequencies is very large
after only a few examples, then we can conclude that one of
the probabilities is greater than the other with high confi-
dence; we need not wait for the sample size specified by the
Chernoff bound, which we have to when the frequencies are
similar. Sequential sampling methods have been reported to
reduce the required sample size by several orders of magni-
tude (e.g., [7])-

In our algorithm (Table 1), we combine sequential sampling
with the popular “loop reversal” technique found in many
KDD algorithms. Instead of processing hypotheses one after
another, and obtaining enough examples for each hypothesis



to evaluate it sufficiently precisely, we keep obtaining exam-
ples (step 2b) and apply these to all remaining hypotheses
simultaneously (step 2c). This strategy allows the algorithm
to be easily implemented on top of database systems (as-
suming they are capable of drawing samples), and enables
us to reach tighter bounds. After the statistics of each re-
maining hypothesis have been updated, the algorithm checks
whether it has seen enough examples to distinguish all the
remaining good hypotheses from the bad ones with sufficient
confidence, in which case it can exit (step 2f). Otherwise, in
step 2g it checks all remaining hypotheses and (i) outputs
those where it can be sufficiently certain that the number of
better hypotheses is no larger than the number of hypothe-
ses still to be found (so they can all become solutions), or (ii)
discards those hypotheses where it can be sufficiently certain
that the number of better other hypotheses is at least the
number of hypotheses still to be found (so it can be sure
the current hypothesis does not need to be in the solutions).
Indeed it can be shown that this strategy leads to a total
error probability less than § as required.

THEOREM 1. The algorithm will output a group G of ez-
actly n hypotheses such that, with confidence 1 —4§, no other
hypothesis in H has a utility which is more than € higher
than the utility of any hypothesis that has been returned:

Pr[3he H\ G : f(h) > fmin +€] <4é (2)
where fmin = mingcc{f(h')}; assuming that |H| > n.

The idea of the proof is that we have to sum up the probabil-
ities that either one of the n best hypotheses is discarded or
any significantly worse hypothesis is returned over all steps
1. This sum must be no more than §. Due to lack of space,
we leave the proof for the full paper.

4. INSTANTIATIONS

In order to implement the algorithm for a given interest-
ingness function we have to find a function A(m,¢, ) that
satisfies Equation 1 for that specific f. We will in the fol-
lowing present a list of A functions for the most commonly
used interestingness functions. Table 2 summarizes our re-
sults and presents, for each studied utility function f, the
error bound A and a corresponding worst-case bound on
the required sample size. (Since the database is constant,
we abbreviate f(h, D) as f(h).)

4.1 Instance-Averaging Functions

This simplest form of a utility function is the average,
over all example queries, of some instance utility func-
tion finst(h,q;). The utility is then defined as f(h) =
ﬁ Zf): 1 finst(h, q;) (the average over the whole database)
and the estimated utility is f(h, Qm) = LS Finst(h, @)
(average over the example queries). An easy example of
an instance-averaging utility is the classifiation accuracy.
Besides being potentially useful, this class of utility func-
tions serves as an introducing example of how A func-
tions can be derived. We assume that there is a lower
bound b = mingep pen finst(h,q) and an upper bound
ub = maxqep,heH finst(h,q) for this function (e.g., classi-
fication accuracy is bounded between 0 and 1) and we de-
fine A = max(finst(hl, q) _fz'nst (h2, q)) _min(finst (hll’ q,) -

Table 1: Sequential sampling algorithm for the n-
best hypotheses problem

Input: num (number of desired hypotheses), € and § (ap-
proximation and confidence parameters). Output: num
approximately best hypotheses (with confidence 1 — §).

1. Let n = num (n counts the number of hypotheses
that we still need to find) and Let H; = H (the set
of hypotheses that have, so far, neither been discarded
nor accepted). Let Q1 = @ (no sample drawn yet).

2. Fori=1...0

(a) Let H¢+1 = Hi.
(b) Query a random item of the database ¢;. Let
Qi =Qi—1U{qgi}
(c) Update the empirical utility f of the hypotheses
in H;.
(d) Let hy be the hypothesis in H; that achieves the
nth highest empirical utility f.
(e) Let hnt1 be the hypothesis in H; that achieves
the n + 1st highest empirical utility f.
() If A(i, —¢,0) < 520> Then Exit (the for loop).
(g) For j =1...|H;|
LIf f(hj, Q) > f(hnt1,Qi) (h; ap-
pears good) and n > 0 and
A (i, =2, f(hi Q) = f(hns1, Q1)) < b
Then Owutput hypothesis h; and then
Delete h; from H;41 and decrement n.

i I f(h, Qi) < f(ha,Qi) (B ap-
pears poor) and [Hij > =n and
Then Delete h; from H;y;.
(h) If n = 0 Or |H;4+1| = n Then Exit (the For
loop).

3. Output the n hypotheses from H; which have the
highest empirical utility.

finst(h5,q’)) as the range of possible values of measured per-
formance differences.

F(h1,Q:) — f(h2,Q:) is a random variable with mean value
f(hi) — f(h2) and bounded range A. We can use the Ho-
effding inequality [9] to bound the chance that an arbitrary
(bounded) random variable takes a value which is far away
from its mean value. When X is a random variable with
expectation E(X) and range at most A and the sample
size is m, then the Hoeffding inequality guarantees that
Pr(X — E(X) > ¢ < exp{—2mf\—22}. In our situation, this
implies Equation 3

Pr{f(h1) — f(h2) > é|f(h1) — f(h2) < €]
< exp {—2m%} . (3)



Table 2: Summary of Instantiations
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We can therefore define A as in Equation 4.

A(m,e,€) = exp{—Zm(é[_\ify}. (4)

The algorithm exits the for loop (at latest) when
A(m, —e,0) < %2‘ This is the case with certainty when

m> A log —‘—L (the proof is left for the full paper). But
note that our algorlthm will generally terminate much ear-
lier; firstly, because we use the t-distribution (for large m)
rather than the Hoeffding bound and, secondly, our sequen-
tial sampling approach will terminate much earlier when
the n best hypotheses differ considerably from many of the
“bad” hypotheses. The worst case occurs only when all hy-
potheses in the hypothesis space are equally good which
makes it much more difficult to identify the n best ones.

4.2 Other Utility Functions

Often the task of data mining problems is to identify sets of
transactions that are both frequent (i.e., general) and statis-
tically unusual. We define the generality g as the probabil-
ity that a transaction lies within the support of a hypothesis
(i-e., the hypothesis applies to the transaction). A number
of utility functions have been proposed that measure these
two properties of hypotheses. We refer the reader to [11] for
a discussion on the background of these utility functions.

One class of utility functions weights the generality g of a
subgroup and the deviation of the probability p of a certain
feature from the default probability po equally [16]. Hence,
these functions multiply generality and distributional un-
usualness of subgroups. Alternatively, we can use the ab-
solute distance |p — po| between probability p and default
probability po. The multi-class version of this function is
g1 >, Ipi —po;| where po, is the default probability for class
i. The appropriate definition of A as well as the resulting
worst-case sample bounds can be found in Table 2.

Squared terms [20] are introduced to put more emphasis on
either the generality or the difference between p and the

default probability. The resulting utility functions are vari-
ations of g*(p — po)-

The Binomial test heuristic [11] is based on elementary con-
siderations. Suppose that the probability p is really equal
to po (i.e., the corresponding subgroup is really uninterest-
ing). How likely is it, that the subgroup with generality g
displays a frequency of p on the sample @ with a greater
difference |p — po|? For large |Q| % g, (p — po) is governed by
the normal distribution with mean 0 and variance at most
T The probability density function of the normal distri-

bution is monotonic, and so the criterion \/m(p—po) (which
is \/g(p — po) times a constant factor) orders the hypothe-
ses according to the probability that they are uninteresting.
Several variants of this utility function have been used. See
Table 2 for the results.

4.3 Negative Result

Several independent impurity criteria have led to utility
functions which are equivalent (up to a constant factor) to
f(h) =500 - po)%; e.g., Gini diversity index, twoing cri-
terion [3], and the chi-square test [16]. The order which
this criterion imposes on hypotheses is also equal to the or-
der imposed by the criterion of Inferrule [2]. Unfortunately,
this utility function is not bounded and a few examples that
have not been included in the sample can impose dramatic
changes on the values of this function.

THEOREM 2. There is no algorithm that satisfies Theo-

rem 1 when f(h) = l—f—g(p—I’O)?-

The idea of the proof is that (f(h1, Q) — f(h2, Q)) — (f(h1) —
f(h2)) is unbounded for any finite m. This implies that,
even after an arbitrarily large sample has been observed
(that is smaller than the whole database), the utility of a
hypothesis with respect to the sample can be arbitrarily far
from the true utility. But one may argue that demanding
f(h,Q) to be within an additive constant ¢ is overly re-
stricted. However, the picture does not change when we



require f(h, Q) only to be within a multiplicative constant,

since (f(h1,Q)— f(h2,Q))/(f(h1)— f(h2)) is unbounded for

any finite m as well.

5. DISCUSSION

Learning algorithms which require a number of examples
that can be guaranteed to suffice for finding a nearly opti-
mal hypothesis even in the worst case have early on been
criticized as being impractical. Maron, Moore, & Lee [14,
15] have introduced sequential sampling techniques [4, 19]
into the machine learning context by proposing the “Ho-
effding Race” algorithm that combines loop-reversal with
adaptive Hoeffding bounds. A general scheme for sequential
local search has been proposed by Greiner [8]. Sequential
sampling can often reduce the required sample sizes in cases
by considerable factors [7].

Sampling techniques are particularly needed in the context
of knowledge discovery in databases where often much more
data are available than can be processed. A non-sequential
sampling algorithm for KDD has been presented by Toivo-
nen [17]; a sequential algorithm (that imposes further re-
strictions on f and possesses an additional parameter) by
Domingo et al. [5, 6].

So far, all sampling algorithms have been restricted to
instance-averaging utility functions (such as error probabili-
ties), and to finding a single approximately best hypothesis.
For the subgroup discovery problem, utility functions are
used that combine generality and a distributional property
of the hypothesis; this cannot be expressed as an instance-
averaging function. Also, users might often be interested
in the n best hypotheses. We presented an algorithm that
works for a wide range of utility functions. For the only
widely used function for which our algorithm does not work
(g/(1 —g)...) we proved that there exists no sampling al-
gorithm at all.

By giving worst-case bounds on the sample size (and prov-
ing that there is no sampling algorithm for some utility func-
tions) our results give an indication as to which of the many
utility functions appear preferable from a sampling point of
view.
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