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Abstract. Information extraction from HTML documents requires a
classifier capable of assigning semantic labels to the words or word se-
quences to be extracted. If completely labeled documents are available
for training, well-known Markov model techniques can be used to learn
such classifiers. In this paper, we consider the more challenging task of
learning hidden Markov models (HMMSs) when only partially (sparsely)
labeled documents are available for training. We first give detailed ac-
count of the task and its appropriate loss function, and show how it can
be minimized given an HMM. We describe an EM style algorithm for
learning HMMs from partially labeled data. We then present an active
learning algorithm that selects “difficult” unlabeled tokens and asks the
user to label them. We study empirically by how much active learning
reduces the required data labeling effort, or increases the quality of the
learned model achievable with a given amount of user effort.

1 Introduction

Given the enormous amounts of information available only in unstructured or
semi-structured textual documents, tools for information extraction (IE) have
become enormously important (see [5,4] for an overview). IE tools identify the
relevant information in such documents and convert it into a structured format
such as a database or an XML document [1]. While first IE algorithms were
hand-crafted sets of rules (e.g., [7]), researchers soon turned to learning extrac-
tion rules from hand-labeled documents (e.g., [9,11]). Unfortunately, rule-based
approaches sometimes fail to provide the necessary robustness against the inher-
ent variability of document structure, which has led to the recent interest in the
use of hidden Markov models (HMMs) [15,12] for this purpose.

Markov model algorithms that are used for part-of-speech tagging [2], as
well as known hidden Markov models for information extraction [12] require the
training documents to be labeled completely, i.e., each token is manually given
an appropriate semantic label. Clearly, this is an expensive process. We therefore
concentrate on the task of learning information extraction models from partially
labeled texts, and develop appropriate EM-style HMM learning algorithms.



We develop an active hidden Markov model that selects unlabeled tokens
from the available documents and asks the user to label them. The idea of
active learning algorithms (e.g., [3]) is to identify unlabeled observations that
would be most useful when labeled by the user. Such algorithms are known for
classification (e.g., [3]), clustering [8], and regression [10]; here, we present the
first algorithm for active learning of hidden Markov models.

The paper is organized as follows. We give formal account of task and loss
function in Section 2, followed by a description of how it can be minimized
given an HMM. We then present in detail our EM style algorithm for learning
HMMs from partially labeled data (Section 3). We then extend this algorithm to
perform active learning in Section 4. We report on our experiments with active
hidden Markov models in Section 5.

2 Information Extraction Problem and HMMs

We begin by giving a definition of the task considered in this paper. A document
is a sequence of observations, O = (O, ...,Or). The observations O; correspond
to the tokens of the document. Technically, each token is a vector of attributes
generated by a collection of NLP tools. Attributes may include the word stem,
the part of speech, the HTML context, and many other properties of the word,
sentence, or paragraph.

The IE task is to attach a semantic tag X; to some of the tokens O;. Ob-
servations can also be left untagged (special tag none). An extraction algo-
rithm f maps an observation sequence Oy,...,Or to a single sequence of tags
(t1,-..,7m1);1 € {X1,...,Xpn,none} (multi-valued assignments would have to
be handled by using several IE models, one per label). An IE problem is defined
by a joint distribution P(m,...,7r,01,...,0r) on documents (observation se-
quences) and their corresponding tag sequences. We can now define the error
rate of an extraction algorithm for this IE problem.

Definition 1 (Per-token error). Assuming that all documents are finite token
sequences, we can define the per-token error of f as the probability of tokens with
false tags (Equation 1). We write f(O)[i] for the ith tag returned by f for O.

1 T
Etoren(f) = /TZa(f(O)[t],Tt)dP(ﬁ,...,TT,ol,...,oT) (1)

We can then state the task of learning IE models from partially labeled docu-
ments as follows.

Definition 2 (Task). Let D be a distribution P(ry,...,71,01,...,071), T; €
{X1,..., X5, none} over observations and tags, H a space of possible IE models
(hypotheses). Given a set E of example vectors drawn according to D in which
however some or all of the 7; may be hidden, the task is to find the IE model
f € H to minimize the per-token error.



Hidden Markov models (see, [13] for an introduction) are a very robust statis-
tical method for structural analysis of temporal data. An HMM A = (w,a,b)
consists of finitely many states {S1,...,Sn} with probabilities m; = P(q1 = S;),
the probability of starting in state S;, and a;; = P(g+1 = Sjlgx = Si), the
probability of a transition from state S; to S;. Each state is characterized by a
probability distribution b;(O;) = P(O¢|q: = S;) over observations. In the infor-
mation extraction context, an observation is a token. The tags X; correspond
to the n target states Si,...,S, of the HMM. Background tokens without tag
are emitted in all HMM states Sp+y1,-..,Sny which are not one of the target
states. We might, for instance, want to convert an HTML phone directory into a
database using an HMM with four nodes (labeled name, firstname, phone, none).
The observation sequence “John Smith, extension 7343” would then correspond
to the state sequence (firstname, name, none, phone).

How can the IE task be addressed with HMMs? Let us first consider what
we would do if we already knew an HMM which can be assumed to have gener-
ated the observations (in Section 3, we will then discuss how learn HMMs from
partially labeled texts). Given an observation sequence O = Oy, ...,Or, which
tag sequence should we return to minimize the per-token error? According to
Bayes’ principle, for each observation O;, we have to return the tag X; which
maximizes the probability P(7; = X;|0). This means that we have to identify
a sequence of states qi, ..., gr which maximize P(g = S;|O, \) and return that
tag X; that corresponds to the state S; for each token O,.

We briefly describe some elements that we need for our HMM algorithms
and refer to [13] for a more detailed discussion. a; (i) = P(g; = Si, O1,...,0¢|))
is the forward variable; it quantifies the probability of reaching state S; at time

t and observing the initial part Oq,...,O; of the observation sequence. 3 (i) =
P(O¢41 --.071|g = Si, A) is the backward variable and quantifies the chance of
observing the rest sequence O;1,...,0r when in state S; at time .

ay(i) and B¢(i) can be computed recursively as in steps 2, 3, and 4 of the
forward-backward procedure (Table 1). In step 5, we calculate P(O|X), the prob-
ability of observation sequence O given the model A. We can now express the
probability of being in state S; at time ¢ given observation sequence O (called
(1) = P(g: = S;|O, \)) in terms of a and 3, as in step 6 of Table 1. Given an
observation sequence (Oy,...,Or) that has been generated by HMM A, we can
minimize the per-token error by returning the sequence of states g; = S; that
maximize 7;(¢). Table 2 shows how we can assign semantic tags to the tokens of
a document such that the per-token error is minimized.

3 Learning HMMs from Partially Labeled Documents

We have now seen how we can use a given HMM for information extraction, but
we still have to study how we can learn the parameters A of an HMM from a set
0= {0(1), ey O(")} of example sequences. We assume that the user labels some
of the tokens (not whole sequences) with the appropriate tag. We express this by

means of a labeling function [ : {Oés)} — {X1,..., Xpn,unknown,nolabel}. The



Table 1. Forward-Backward algorithm

Input Observation sequence (Os,...,Or), HMM A.

Let a1(¢) = m;b;(01). Let fr(i) = 1.

Forallt=1...T andi=1...N Let av41(j) = (31, as(i)ai;) bj(Oes1).
Forallt=T...1andi=1...N Let 8;(i) = 3., aijbj(Oe+1)Be+1(j).
Let P(O|N) =37 ar(i)

Fort=1...T,i=1...N, Letw(i):%.

SOk W

Table 2. Information extraction using hidden Markov models

1. Input Document Doc = (w1, ...wr); HMM ); set of tags X1, ... X, corresponding
to target HMM states Si,...,Sn.
2. Call the tokenizer, POS tagger, parser, etc, to generate sequence O = (O1,...,0r)
of augmented tokens, where each O; is a vector containing word w; and attributes.
The attributes refer to properties of the word w;, the sentence, or the paragraph
in which wy occurs.
Call Forward-Backward and Let g; = maxs; y:(¢) for all t =1...T.
4. Fort=1...T
(a) If gf = S; € {S1,...,Sn} (target state) Then Output “(X;)w:(/X;)”.
(b) Else (background state) Output w;.

w

user may label a token (I (Ogs)) = X;) which means that the HMM must have
been in state S; while emitting Ot(s). Tokens may be labeled as not possessing

a tag (I (Ogs)) = nolabel) which implies that the HMM must have been in one
of the background states, or may be left unlabeled (I (0§S)) = unknown) which

says nothing about the state.

The Baum-Welch algorithm finds the mazimum likelihood (ML) hypothesis A
which maximizes P(O|)\). Unfortunately, there is no obvious relation between the
ML hypothesis and the Bayes hypothesis that minimizes the expected error given
sample O. The ML hypothesis does not take the prior probability of hypotheses
P(}) into account. In practice, ad-hoc regularization mechanisms have to be
applied in order to avoid finding ML hypotheses that explain the data well but
are very unlikely a priori. We use Laplace smoothing with an additive value of
0.0001; maximum entropy is a suitable regularization technique, too [12].

Baum-Welch is an instantiation of the EM algorithm. The main difficulty
that this algorithm addresses is that, in order to estimate the transition and
emission probabilities, we have to know the state sequence that corresponds to
each of the observation sequences. But, unless all observations are labeled with
one of the tags, we need to know the transition and emission probabilities in or-
der to calculate the probability of a state sequence, given one of the observation
sequences. The algorithm starts with a random model, and then interleaves cal-



culation of the state probabilities (the E-step) with estimation of the transition
and emission probabilities based on the calculated state probabilities (the M-
step). This bootstrapping procedure converges towards a stable (at least local)
optimum with small error rate. We will only elaborate on those elements of the
Baum-Welch algorithm that are required to explain our modifications; we refer
the reader to [13] for detailed explanations.

Two more variables are needed to define the algorithm; we have to modify
their definition and introduce a third to adapt the algorithm to partially labeled
sequences. & (i, j) is the probability of a transition from S; to S; at time ¢. When
O and O:41 are unlabeled, it is defined in Equation 2 and can be calculated
as in Equation 4. In Equation 3, we split £ into two parts; the right hand side
of Equation 3 is equal to our definition of +;(¢) . In Equation, 5, we factor this
definition of (i) and introduce a new term (i, j) (defined in Equation 6) for
the residual of Equation 5.

&(i,7) = P(qe = Si, g1 = S;|0, N) (2)
= P(q: = Si|O, \)P(qi+1 = Sjlg: = Si, 0, A) (3)
o (8)aibi(Opy1)Beya ()
515(7’7.7) - P(OF)_\) + (4)
_ (a(@)Be(@) ((aijbi(O1)Beri () _ A
) = Placn = Sl = 5,00 = (#Cful)) (g

Let us now consider the case in which a token is labeled Xj. In this case, we
have to force 74(i) to one for i« = k and to zero for all other ¢ (step 3(c)iii of
Table 3). Similarly, v;(¢,j) = 1 if O¢y1 is labeled X; and zero for other indices
(step 3(c)vi). When [(O;) = nolabel, then we we know that the HMM cannot
be in any of the target states. In this case, we have to set these probabilities to
zero and renormalize (step 3(c)ii for v and step 3(c)v for 4'). Table 3 shows the
resulting Baum-Welch algorithm which maximizes the likelihood of the token
sequences while obeying the constraints imposed by the manually added labels.

Theorem 1. When the documents are completely unlabeled (l(0§3’ =
unknown for all t,s), then P(O|\) increases at each iteration or stays con-
stant in which case it has reached a (local) mazimum. When all documents are
completely labeled ﬂ(Ogs) = X; for some i and all t,s), then the algorithm
stabilizes after the first iteration and X\ mazimizes P(1(O}), .. .,l(O%nn))M), the
likelihood of the labels.

4 Active Revision of Hidden Markov Models

Unlabeled documents can be obtained very easily for most information extraction
problems; only labeling tokens in a document imposes effort. An active learning



Table 3. Baum-Welch Algorithm for partially labeled observation sequences

1. Input Set O of m token sequences O = {(O; oW, .. .,O(Tll)), e, (0§m>, . ,O(T’:))}.

Labeling function !/ : {Ot(s)} = {X1,...,Xn, unknown, nolabel}. Number of states
N. Optionally an initial parameter set .
2. If no initial model X is provided Then initialize (7,a,b) at random, but making
N ! N :
sure that > ;" mi =1, 3 bi(0) =1 (for all i), }° 7", aij =1 (for all i), and that
0 < p < 1 for all probabilities p € {m, a,b}.
3. Repeat
(a) For all s = 1...m Call the forward-backward procedure to calculate the
oy (0), B{” (i), and 7" (3).
(b) For all s =1...m Let P(O®)|A) = XN af(s).
(c) Fors=1...m,t=1...Ts,andi=1...N Do
(8) ;y5(8) (s
. s . o, (9)B, 7 (4)
i If l(Ot( )y = unknown Then Let v,(i) = RGOS
o™ ()8 (i)

D i1 O @B

ii. Else If [(O{*)) = nolabel Then Let »{*)(i) =

i >mn, and 0 for all ¢ < n.
iii. Else Let 1(*)(i) =1 for I(0{*)) = X; and 0 for all other i.
iv. If l(Ot(j_)l) = wunknown and t < T, Then Let fy’( Xi,5) =
1305 (0 (s) (s
M forall j=1...N.
58 (0)
v. Else If l(ogfgl) = nolabel and t < T, Then Let ~'{”(i,j) =
a;jb; (0t+1)3til(j)
ZkN=n+1 zkbk(ot+1)ﬂi+1(k)
vi. Else If t < T, Then Let '(s)(z j) =1 for l(Ot(j_)1 = Xj, and 0 for all
other j.
vii. If t < T, Then Let £ (i, j) = v{*)(i)y'{*)(j) (frequency of a transition
from S; to S; at time ¢).

(d) Let m = ~>" 'y§ *) (expected frequency of starting in state S;).

for all j > n,and 0 for all j <n .

1 m Ts—1 ,(s)
. . Q. &, (1,5)
() Fori=1...N, j=1...N Let a;; = %E:’;l E ;1§T3—1t(3)() (ex-
m s=1 t=1
pected number of transitions from S; to S; / number of transitions from S;).
(f) For ¢« = .N and all observation values o Let b;(0) =
(s) 5(0(") =o)

1 Z
E t= lz:th ’y( :
t=1 't

Si; & returns 1 if Of*) = o, 0 otherwise).
4. Until the probabilities a;; and b;(0O;) stay nearly constant over an iteration.
5. Output parameters A = (m,a,b).

(expected frequency of observing o when in state




approach to utilizing the available amount of user effort most effectively is to
select, from the available unlabeled tokens, the “difficult” ones of which to know
the labels that would be most interesting.

When our objective is to minimize the per-token error, then a Bayes-optimal
extraction algorithm has to label each token Ot(s) with the tag X; that maxi-
mizes P(S;|0®),\) = 7§s) () (or none, if i > n). We deviate from this optimal
strategy when our parameter estimates X’ differ from the true parameters A such
that some state S; seems to be most likely although state S; really is most likely
(max; P(g: = S;|0,A) # max; P(q; = S;|O, X)) We can see the difference be-
tween the probability of the most likely and that of the second most likely state
as the confidence of the state given O. When such confidence values or margins
can be defined for instances, then we often see empirically that instances with
low margins are most relevant to adjust the hypothesis parameters (e.g., [16, 3]).

In analogy, we define the margin M (g:|O,\) of the token that we read to
time ¢ as the difference between the highest and second highest probability for
a state (Equation 8).

M(q:|0,A) = max{P(q; = 5|0, \)} - max{P(g: = 5;|0, \)} (7)

= max{y (i)} - f;.lgf{% (@)} (8)

Intuitively, the margin can be seen as quantifying how “difficult” (low margin) or
“easy” (large margin) an example is. Our active HMM learning algorithm (Table
4) first learns an initial model A; from a set of partially labeled documents. It
then determines the margins of all tokens and starts asking the user to label
those tokens which have a particularly low margin. The Baum-Welch algorithm
is restarted, using the previous parameters A;_; as initial model and adapting
Ar to the new data.

5 Experiments

For our experiments, we generated HMMs with variable numbers of background
and target states at random. We used these HMMs to generate unlabeled ob-
servation sequences; we label a number of initial tokens drawn at random. We
then study how the error developes with the number of additional labels added
to the observation sequences according to three strategies. The “random” strag-
egy is to label randomly drawn observations; the “margin” strategy is to label
“difficult” tokens with smallest margins; this corresponds to our active hidden
Markov model. As a control strategy (“large margins”), we also try selecting
“easy” tokens that have the largest margins. If “margins” is really better than
“random”, we expect “large margins” to perform worse.

We used three different HMM sizes. The “easy” HMM consists of one back-
ground and two target states. Each state emits three out of 20 observations
with randomly drawn probabilities. We generated 50 sequences of 20 initially
unlabeled observations. The “medium size” HMM possesses 10 nodes, and the



Table 4. Active Revision of hidden Markov Models

1. Input Set O of m Sequences O = {(O{",...,0%)),...,(0{™,..., 08"} of to-

kens; Labeling function [ : OES) — {S1,...,Sn,unknown, nolabel}; Number of
states IN; query parameter n,.
2. Call the Baum-Welch algorithm to determine initial parameters A;.
3. For k=2...00 Repeat
(a) For s =1...m Call the forward-backward algorithm.
(b) For s = 1...m and ¢t = 1...Ts Let M(q|0®) = max;{v(i)} —
max;i{y:(5)}.
(c) Ask the user to label the n, unlabeled tokens O (1(0{*)) = nolabel) with
smallest margin M (g;|O®). Update the labeling function I.
(d) Estimate the new model parameters )\, using the Baum-Welch algorithm
with initial model Ag_1.
4. Until the user gets tired of labeling data.
5. Return HMM parameters A\; = (,a,b).

“large” HMM consists of 15 states. The curves in Figure 1 are averages over 50
leaning problems. The initial sample contains only unlabeled tokens (Figures 1a
for the easy, 1d for the medium size and 1g for the hard learning problem), labels
of 80 (Figures 1b, le, and 1h, respectively) and 160 tokens (Figures lc, 1f, and
1i) drawn at random.

In Figures 1a, 1d, and 1g we see a slight but significant advantage of random
token selection over selecting tokens with small margins. Using only difficult
tokens from the beginning is not beneficial on average. In the later phase of
learning, token selection by small margins gains a small advantage. The benefit
of the margin strategy becomes more clearly visible, when the initial sample
contains the labels of 80 (Figures 1b, le, and 1h) or 160 (Figures 1c, 1f, and 1i)
tokens drawn at random, and only from then on tokens with smallest margins
are selected. For the small HMM learning problem (when much unlabeled data
relative to the problem complexity is available), the bottom line error is reached
after about 300 labels under the margin strategy and after 600 labeled tokens
under the random strategy.

Using active learning with small margin examples after 70 initial random
tokens seems to be most beneficial. In this case (Figure 1b), the base level error
is reached after less than 200 examples for active and after 1000 examples regular
learning — i.e., five times fewer labels are needed. Choosing only the most “easy”
examples (large margins) is clearly a bad strategy in all cases. Our experiments
show that, at least for the classes of HMM that we generated, using only difficult
low-margin tokens for learning from the beginning results in higher error rates.
However, when the training is started by labeling randomly drawn tokens and
the active HMM chooses difficult low-margin tokens after that initial phase, then
a significant improvement is achiever over regular HMMs that can result in the
sufficiency of many times fewer labeled examples.
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Fig. 1. Error rate of active and regular learning over number of labeled tokens. (a)-
(c), easy HMM; initial sample contains (a) no (b) 80 (c) 160 labeled tokens drawn at
random. (d)-(f) medium size HMM,; initial sample with (d) no (e) 80 (f) 160 initial
labels. (g)-(i) large HMM; (g) no (h) 80 (i) 160 initial labels.

6 Discussion and Related Work

We defined a hidden Markov model that operates on partially labeled observation
sequences. We defined the margin of tokens as a measure of their difficulty. Our
experiments show that it is particularly important to know the labels of difficult
examples with low margins. We observed that active HMMs sometimes require
three times fewer examples than regular HMMs to achiev a high level of accuracy.

An alternative hidden Markov model for information extraction has been
described by [12]. Instead of using the usual distributions a;; and b;(Oy), the
alternative model uses a conditional probability P(g¢+1|g:, O¢+1)- This appears
appropriate at first blush but has considerable consequences.

Firstly, the number of probabilities to be estimated is |Q|? x |O| as opposed
to |Q|* + |Q] x |O] in our model. Secondly, P(O|)\) cannot be computed in
the alternative model which renders it impossible to use such HMMs for text
classification which seems possible, in principle, in our model. The Baum-Welch
algorithm of [12] requires all tokens to be labeled with exactly one state. However,



the modifications proposed here could be applied to the alternative model as well.
See [14] for a more detailed comparison of the two models.

A restriction of the model discussed here is that it is not possible to enclose

a token sequence in nested tags. Only when all tokens are labeled with a tag
that corresponds to exactly one state, then cascaded Markov models [2] solve
this problem. For the more general case of partially labeled documents, the
hierarchical hidden Markov model [6] has to be adapted to partially labeled
token sequences, analogously to our adaptation of the standard HMM.
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