Proceedings of the Eighteenth International Conference on Machine Learning. 2001.

Incremental Maximization of Non-Instance-Averaging Utility
Functions with Applications to Knowledge Discovery Problems

Tobias Scheffer!?
Stefan Wrobel!

SCHEFFER@IWS.CS.UNI-MAGDEBURG.DE
WROBELQIWS.CS.UNI-MAGDEBURG.DE

1 University of Magdeburg, FIN/IWS, Universititsplatz 2, 39106 Magdeburg, Germany
2SemanticEdge, Kaiserin-Augusta-Allee 10-11, 10553 Berlin, Germany

Abstract

Data-independent sample bounds are known
to grossly overestimate the amount of data
needed for most individual problem in-
stances. This has led to significant recent
interest in sequential algorithms which also
give precise guarantees about the quality of
results, but determine the amount of data
needed based on characteristics of the actual
problem instance at hand, and thus need sig-
nificantly fewer examples. In this paper, we
present a practical sequential sampling algo-
rithm which (a) is capable of quickly iden-
tifying the n best hypotheses and (b) works
for all utility functions that can be estimated
with bounded error. The algorithm thus can
be used not only for predictive learning, but
also for tasks such as association rule finding
or subgroup discovery. Our experiments with
two real-world domains show that our algo-
rithm can be orders of magnitude faster than
non-sequential sampling algorithms.

1. Introduction

In many machine learning settings, an agent has to
find a hypothesis which maximizes a given utility cri-
terion. This criterion can be as simple as classifica-
tion accuracy, or it can be a combination of generality
and accuracy of, for instance, an association rule. The
utility of a hypothesis can only be estimated based
on data; it cannot be determined exactly (this would
generally require processing very large, or even infinite
amounts of data). Algorithms can still give stochastic
guarantees on the optimality of the returned hypothe-
ses, but providing guarantees that hold for all possible
problems usually requires impractically large samples.

Past work on algorithms with stochastic guarantees
has concentrated on predictive learning with instance-

averaging utility functions, and has pursued two ap-
proaches — either processing a fixed amount of data
and making the guarantee dependent on the observed
empirical utility values (e.g., Freund, 1998; Langford
& McAllester, 2000), or demanding a certain fixed
quality and making the number of ezxamples depen-
dent on the observed utility values (Wald, 1947; Maron
& Moore, 1994; Greiner, 1996; Domingo et al., 1999)
(this is often referred to as sequential sampling).

In this paper, we generalize known sampling results in
two respects. Firstly, in many cases, it is more natu-
ral for a user to ask for the n best solutions instead
of the single best or all hypotheses above a thresh-
old. Secondly, and more importantly, many popular
utility functions for tasks other than predictive learn-
ing (see, e.g., Klosgen, 1996) cannot be expressed as
instance-averaging functions. Improving on (Scheffer
& Wrobel, 2000), we therefore present a practical algo-
rithm that works for all utility functions that can be
estimated with bounded error, and thus can be used
not only for predictive learning, but also for tasks such
as association rule finding or subgroup discovery. Our
experiments with two real-world domains show that
our algorithm can be orders of magnitude faster than
non-sequential sampling algorithms.

In Section 2, we discuss the problem setting and re-
lated research. We generalize the problem setting in
Section 3. Section 4 describes our sampling algorithm
and presents the stochastic quality guarantee. In Sec-
tion 5, we instantiate the algorithm for most of the
utility functions popular in KDD and prove that there
is no algorithm with similar guarantees for one util-
ity function. We discuss experimental results on large
databases in Section 6; Section 7 concludes.

2. Problem Setting and Prior Work

The most common instantiation of utility-maximizing
search is predictive learning from examples. Here, the

utility function to be maximized is the probability of
correctly classifying a random instance drawn from the
instance space X according to a fixed, unknown distri-
bution D. Since we are only given a sample S of classi-
fied instances, we can only estimate the error rate and
thus run the risk of over- or underestimating particular
hypotheses and returning a suboptimal solution.

While many practical learning algorithms heuristically
try to limit this risk, it is clearly desirable to arrive at
learning algorithms that can give precise guarantees
about the quality of their solutions. If the learning al-
gorithm is not allowed to look at any data before spec-
ifying the guarantee or fixing the required sample size
(“data-independent”), we arrive at impractically large
bounds as they arise, for instance, when applying PAC
learning (e.g., Haussler, 1992) in a data-independent
way. Researchers have therefore turned to algorithms
that are allowed to look at (parts of) the data first.

We can then ask two questions. Knowing that our
sample will be of size m, we can ask about the qual-
ity guarantee that results. On the other hand, know-
ing that we would like a particular quality guaran-
tee, we can ask how large a sample we need to draw
to ensure that guarantee. The former question has
been addressed for predictive learning in work on self-
bounding learning algorithms (Freund, 1998) and shell
decomposition bounds (Haussler et al., 1996; Langford
& McAllester, 2000).

For our purposes here, the latter question is more in-
teresting. We assume that samples can be requested
incrementally from an oracle (“incremental learning”).
We can then dynamically adjust the required sample
size based on the characteristics of the data that have
already been seen; this idea has originally been referred
to as sequential analysis (Dodge & Romig, 1929; Wald,
1947). Note that even when a (very large) database is
given, it is useful to assume that examples are drawn
incrementally from this database, potentially allowing
termination before processing the entire database (re-
ferred to as sampling in KDD; Toivonen, 1996).

For predictive learning, the idea of sequential analysis
has been developed into the Hoeffding race algorithm
(Maron & Moore, 1994). It processes examples in-
crementally, updates the utility values simultaneously,
and outputs (or discards) hypotheses as soon as it be-
comes very likely that some hypothesis is near-optimal
(or very poor, respectively). The incremental greedy
learning algorithm PALO (Greiner, 1996) has been re-
ported to require many times fewer examples than the
worst-case bounds suggest. In a KDD context, similar
improvements have been achieved with the sequential
algorithm of (Domingo et al., 1999).

3. Generalized Problem Setting

We generalize these above results in two respects.
First, in many cases, it is more natural for a user to
ask for the n best solutions instead of the single best or
all hypotheses above a threshold. For instance, a user
might find a small number of the most interesting pat-
terns in a database, as is the case for association rule
(Agrawal et al., 1996) or subgroup discovery (Klosgen,
1996; Wrobel, 1997). We thus arrive at the following
generalized problem statement and quality guarantee.

Definition 1 (Approximate n-best hypotheses prob-
lem) Let D be a distribution on instances, H a set
of hypotheses, f : H — IRZ% a function that assigns
a utility value to each hypothesis and n a number of
desired solutions. Then let §, 0 < & < 1, be a user-
specified confidence, and ¢ € IR™ a user-specified maz-
imal error. The approximate n-best hypotheses prob-
lem is to find a set G C H of size n such that

with confidence 1—4, thereisnoh' € H: h' &
G and f(h',D) > fmin + €, where fim ==
minpeaf(h, D).

Secondly, and more importantly, the work mentioned
above has focused on the particular class of instance-
averaging utility functions where the utility of a hy-
pothesis h is the average of utilities defined locally
for each instance. While prediction error clearly is
an instance-averaging utility function, popular utility
functions for other learning or discovery tasks often
combine the generality of hypotheses with distribu-
tional properties in a way that cannot be expressed as
average over the data records (Klosgen, 1996).

A popular example of such a discovery task is sub-
group discovery (Klosgen, 1996). Subgroups charac-
terize subsets of database records within which the
average value of the target attributes differs from the
global average value, without actually conjecturing a
value of that attribute. For instance, a subgroup might
characterize a population which is particularly likely
(or unlikely) to buy a certain product. The generality
of a subgroup is the fraction of all database records
that belong to that subgroup. The term statistical un-
usualness refers to the difference between the default
probability po (the target attribute taking value one in
the whole database) and the probability p of a target
value of one within the subgroup. Usually, subgroups
are desired to be both general (large g) and statisti-
cally unusual (large |[p—po|). There are many possible
utility functions (Klosgen, 1996) for subgroup discov-
ery, none of which can be expressed as the average
(over all instances) of an instance utility function.

Consequently, in order to avoid unduly restricting our
algorithm, we will not make syntactic assumptions
about f. In particular, we will not assume that f is
based on averages of instance properties. Instead, we
only assume that it is possible to determine a two-sided
confidence interval f that bounds the possible differ-
ence between true utility and estimated utility (on a
sample) with a certain confidence. As we will show
in Section 5 below, finding such confidence intervals is
straightforward for classification accuracy, and is also
possible for all but one of the popular utility functions
from association rule and subgroup discovery.

Definition 2 (Utility confidence interval) Let f
be a utility function, let h € H be a hypotheses. Let
f(h) denote the true utility of h on the instance dis-
tribution D, f(h,Qu) its estimated quality computed
based on a sample Q,, of size m, drawn iid from the
distribution D. Then E : IN x IR — IR is a utility
confidence bound for f iff for any 6, 0 < < 1,

Pro,, [|f(h,Qm) = f(W)| < E(m,8)] > 1-6 (1)

If, in addition, for any §,0 < § < 1 and any ¢ there
is a number m such that E(m,d) < ¢ we say that
the confidence interval vanishes. We will see that we
can only guarantee termination when the confidence
interval vanishes.

We sometimes write the confidence interval for a spe-
cific hypothesis h as Ep,(m,d). Thus, we allow the con-
fidence interval to depend on characteristics of h, such
as the variance of one or more random variables that
the utility of h depends on. We will discuss confidence
intervals for different functions in Section 5.

4. Algorithm

In our algorithm (Table 1), we combine sequential
sampling with the popular “loop reversal” technique
found in many KDD algorithms. In step 3b, we col-
lect data incrementally and apply these to all remain-
ing hypotheses simultaneously (step 3c). This strat-
egy allows the algorithm to be easily implemented on
top of database systems (assuming they are capable of
drawing samples), and enables us to terminate earlier.
After the statistics of each remaining hypothesis have
been updated, the algorithm checks all remaining hy-
potheses and (step 3(e)i) outputs those where it can
be sufficiently certain that the number of better hy-
potheses is no larger than the number of hypotheses
still to be found (so they can all become solutions),
or (Step 3(e)ii) discards those hypotheses where it can
be sufficiently certain that the number of better other
hypotheses is at least the number of hypotheses still

to be found (so it can be sure the current hypothesis
does not need to be in the solutions). When the algo-
rithm has gathered enough information to distinguish
the good hypotheses that remain to be found from the
bad ones with sufficient probability, it exits in step 3.
Indeed it can be shown that this strategy leads to a
total error probability less than ¢ as required.

Theorem 1 The algorithm will output a group G of
ezactly n hypotheses (assuming that |H| > n) such
that, with confidence 1 — &, no other hypothesis in H
has a utility which is more than € higher than the utility
of any hypothesis that has been returned:

PrEh e H\G: f(h) > fmin+£] <6 (2)
where fuin = mingcq{f(h")}.

The proof (which can be found in the full paper; Schef-
fer & Wrobel, 2001) has two parts. We can first prove
that at any time step 7 (1 < i < M) and for any
hypothesis h € H;, the two-sided difference between
f(h,Q;) and f(h) is at most Ej (%, %) Using this
Lemma, we can then prove that the algorithm never
outputs a hypothesis for which there are at least n
other hypotheses with a utility value that is € or more
higher, and never discards a hypothesis which is among
the n best hypotheses. Secondly, we can show that af-
ter M examples have been seen, we can be certain that
the two-sided difference between f(h, Q);) and f(h) lies
below 5. It is then safe to output the hypotheses with
highest estimated utility.

Theorem 2 (Termination) If for anyd 0<§<1)
and € > 0 there is a number m such that E(m,d) <
€, then the algorithm can be guaranteed to terminate.
Moreover, the number of required examples is at most
the smallest number m for which E(m, ﬁ) <.

Correctness of Theorem 2 follows immediately from
Step 3 of the algorithm. Theorem 2 says that we can
guarantee termination if the confidence interval van-
ishes for large numbers of examples.

5. Instantiations

In order to implement the algorithm for a given inter-
estingness function we have to find a confidence bound
E(m,d) that satisfies Equation 1 for that specific f.
We will in the following present a list of confidence in-
tervals. We will start with the easiest case — instance
averaging functions such as classification accuracy —
and then discuss the functions that are most commonly
used for knowledge discovery tasks. We ask the reader
to refer to the full paper (Scheffer & Wrobel, 2001) for
the proofs.

Table 1. Generic sequential sampling algorithm for the n-best hypotheses problem

Algorithm. Input: n (number of desired hypotheses), € and § (approximation and confidence parameters).
Output: n approximately best hypotheses (with confidence 1 —).

1. Let ny = n (the number of hypotheses that we still need to find) and Let Hy = H (the set of hypotheses
that have, so far, neither been discarded nor accepted). Let Qo = 0 (no sample drawn yet). Let i = 1 (loop

counter).

2. Let M be the smallest number such that E(M, 52+

) 2|
3. Repeat until n; =0 Or |H;;1| = n; Or E(i,
(a) Let H,'+1 = Hz
(

)
2| H;|

b) Query a random item of the database ¢;. Let Q; = Q;—1 U {¢;}

(¢) Update the empirical utility f of the hypotheses in H;.

)
)

(d) Let H} be the n; hypotheses from H; which maximize the empirical utility f.
)

(e) For h € H; While n; > 0 And |H;| > n;

i. If f(h,Q:) > En(i, s + T CHH? {f(hk;Qz') + En, (4, %)} —¢ And h € Hf (h appears
good) Then Output hypothesis h and then Delete h from H;y; and Let n;y; = n; — 1. Let H}
be the new set of empirically best hypotheses.

min

ii. Else If f(h,Q;) <

= hp€H} {f(hkan) - Ehk (’&, %)} - Eh(ia ﬁ) (h appears pOOI’) Then

Delete h from H; ;. Let H} be the new set of empirically best hypotheses.

(f) Increment .

4. Output the n; hypotheses from H; which have the highest empirical utility.

5.1 Instance-Averaging Functions

This simplest form of a utility function is the aver-
age, over all example queries, of some instance util-
ity function finst(h,q;). The utility is then defined
as f(h) = [finst(h,q)D(q:)dg; (the average over
the instance distribution) and the estimated utility
is f(h,Qm) = L7 finst(h,qi) (average over the
example queries). An easy example of an instance-
averaging utility is the classification accuracy. We as-
sume that the possible range of utility values lies be-
tween 0 and A (A = 1 for classification accuracy).

We can derive a confidence interval E(m,d) which sat-
isfies Equation 1 from the Hoeffding inequality (which
is a general probability tail bound). Equation 1 is
satisfied when we choose E(m,d) = ,/%bg%. In
Equation 3 we insert our definition of E into Equation
1. We apply the Hoeffding inequality in Equation 4
and obtain the desired result.

Pr [|£(h,Qm) = F(W)] > E(m,5)]

2

X A2
= Pr(IFh,Qm) — f()] >[5 -log 3| @)

For implementation purposes, the Hoeffding inequal-
ity is less suited since it it not very tight. For large
m, we can replace the Hoeffding inequality by the nor-
mal distribution, referring to the central limit theorem.
f(h, Q) — f(h) is a random variable with mean value
0; we further know that f (h, Qm) is bounded between
zero and A. In order to calculate the normal distribu-
tion, we need to refer to the variance of our random
variable. In step 3, the variance is not known since we
do not refer to any particular hypothesis. We can only
bound the variance as s < N Random variable

2v/m(f (h’f\?”)_f (h) i governed by the standard normal
distribution which implies that a confidence interval
of E(m,d) = Z s ﬁ satisfies Equation 1. This
interval is a little tighter than Hoeffding’s inequality.

We can look up the inverse normal distribution z.

In Steps 3(e)i and 3(e)ii, we refer to specific hypotheses
h and can therefore determine the empirical variance

Table 2. Utility functions and the corresponding utility confidence bounds

f(h) E(m, d) N sample bound
instance-averaging E(m,6) = — 2_/% i Ep(m,d) = —2_55h 2A2 log 5 |H |
g(p_pO) Z_8 (1_i)
9lp — pol E(m,0) = 72 + — 15 1og 812l
9= > Ipi — poy En(m, 0) = 2,_3(sg + 8p + 21_3545p)
by
32|(£—5§|) E(m,d) = 2\Fz17§ + Tr;:\/\/:(zl—ﬁ)Z + 8m1\/E(Z17%)3 % Jog 8| H;|
g?1 ¢ pi — po Ep(m,8) = (25, + Sp)zl—é + (3 + 23931))('21—%)2 + 311552;(21 s)? £ 0
¢ 2ui=1 [Pi ;
V9(p — po) _ [mis | ms 28 %_s
V3P — pol E(m,0) = 2x/i + 2\/_ + 2\/_ 2\/_ %log%
V9% Xia Ipi = po, En(m,0) = | 5¢7Z1_5 + sp71_ Sg%1_35p2_3

of f(h,Qm). We can define Ej(m,d) in Equation 6.

E(m,d) = Zy_5 " Sh (5)
= g | Y Ui = 101,@07 ©)

The algorithm exits the for loop (at latest) when

E (m, 2‘H‘) < £. We can show that this is the case

with certainty when m > 2A log 55 A1t follows from

inserting this bound and our deﬁmtlon of E into the
Hoeffding equality.

But note that our algorithm will generally terminate
much earlier; firstly, because we use the normal distri-
bution rather than the Hoeffding approximation and,
secondly, our sequential approach will terminate much
earlier when the n best hypotheses differ consider-
ably from many of the “bad” hypotheses. The worst
case occurs only when all hypotheses in the hypothe-
sis space are equally good which makes it much more
difficult to identify the n best ones.

5.2 Utility Functions used for KDD Problems

Table 2 summarizes our results on more general utility
functions that are popular in KDD (Kl6sgen, 1996).
See our full paper (Scheffer & Wrobel, 2001) for proofs
and a more detailed discussion.

The first class of nontrivial utility functions weight the
generality g of a subgroup and the deviation of the
probability of a certain feature p from the default prob-
ability po equally (Piatetski-Shapiro, 1991). Hence,
these functions multiply generality and distributional
unusualness of subgroups. Alternatively, we can use
the absolute distance |p — pg| between probability p
and default probability pg. The multi-class version of
this function is g2 3 |p; —po, | where po, is the default

probability for class i.

The third row of Table 2 summarizes our results for
utility functions with squared terms (Wrobel, 1997)
which are introduced to put more emphasis on the the
difference between p and the default probability.

The final class of utility functions that we study is de-
rived from the binomial test heuristic (Klosgen, 1992)
which is based on elementary considerations. Suppose
that the probability p is really equal to py (i.e., the
corresponding subgroup is really uninteresting). How
likely is it that the subgroup with generality g dis-
plays a frequency of p on the sample () with a greater
difference |p — po|? For large |Q| X g, (p — po) is gov-
erned by the normal distribution with mean value of
zero and variance at most ﬁ The probability den-
sity function of the normal distribution is monotonic,
and so the resulting confidence is order-equivalent to
vm(p — po) (m being the support) which is factor
equivalent to \/g(p — po). Several variants of this util-
ity function have been used. The worst-case sample
size bound given in Table 2 is not very tight. In the
empirical studies (see Section 6) we observed quite a
reasonable behavior of our algorithm for this utility.

5.3 Negative Results

Several independent impurity criteria have led to util-
ity functions which are factor-equivalent to f(h) =
i - po)?; e.g., Gini diversity index and twoing
criterion (Breiman et al., 1984), and the chi-square
test (Piatetski-Shapiro, 1991). Note that it is also
order-equivalent to the utility measure used in Infer-
rule (Uthurusamy et al., 1991). Unfortunately, this
utility function is not bounded and a few examples
that have not been included in the sample can impose
dramatic changes on the values of this function. This
motivates our negative result.

25000 T T T T T 10000 [T T T 1 T T T T 6000 T T T T T T T T
on-sequential sampling —— 9000 N non-sequential sampling —— | non-sequential sampling —+—
first hypothesis --->--- first hypothesis --->--- 5000 first hypothesis ---x--- |
20000 - tenth hypothesis ---*--- 8000 - tenth hypothesis ---*--- tenth hypothesis ---*---
7000 |
[) @ 4000
& 15000 E & 6000 5
é é 5000 |- é 3000 (%
10000 < B 4000 -~
g \ « & so0l 8 2000 |
5000 N\ ¢ g 2000 [
N 1000
Mo X T 1000 g
By S Errers — e =
0 Il l L e Fres 0 Il Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il Il Il Il
0 005 01 015 02 025 03 0.1 0.14 018 0.22 0.26 0.3 0.14 018 0.22 0.26 0.3 0.34
(a) epsilon (b) epsilon (c) epsilon
30000 T ™ T 25000 T T T T T T T T 160000 T T T T
non-sequential sampling —+— non-sequential sampling —+— on-sequential sampling —+—
25000 | first hypothesis ---—-- _| first hypothesis -----—- 140000 [first hypothesis ——-x-—--
tenth hypothesis ------ 20000 tenth hypothesis ---x--- 120000 F tenth hypothesis ---*--- |
g 20000 2 1so0o | & 100000 - 1
é_ 15000 [é_ ié_ 80000 B
10000 | L o
§ 10000 |- g § 60000
so00 | 5000 - 40000 |- g
20000 B
0 - 0 L AR T W et 0 D Y M .
0.05 0.1 0.15 0.2 0.25 0.3 0.1 0.14 0.22 0.26 0.3 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
(d) epsilon (e) epsilon (f) epsilon
Figure 1. Sample sizes for the juice purchases database. (a) f = glp —pol, k =1, = .1; (b) k = 2; (c) k = 3; (d)

f:g2|p—po|,k::1,5=.1; @k=2,(f) f=glp—po|, k=1,6=.1

1E6
1E7 " non-sequential sampling ——— | non-sequential sampling —+— 157 L " non-sequential sampling —— |
™ first hypothesis --->--- ™ L first hypothesis --->--- | ™ first hypothesis ---x---
Tg tenth hypothesis ---*--- - Tg tenth hypothesis ---*--- Tg - tenth hypothesis ---*:---
@
o 1E6 R o 1E5 | R & 1E6 |
s L] g g L
[o o T Q
uu’ 1ES5 | B UE’ 5 1ES «
o g o 1E4 - g o - E
> = 2 *
E 1E4 E £ | i SIEAF s 3
" " n it SRS
L 4 S LT e e
1E3 E3 L L L L % 1E3 L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
(a) epsilon (b) epsilon (c) epsilon

Figure 2. log,, of the sample sizes for the KDD cup data of 1998. (a) f = glp —po|, k =1, § = .1; (b) f = ¢*|p — pol, (c)

f= \/!7|P — pol.

Theorem 3 There is no algorithm that satisfies The-
orem 1 when f(h) = 2 (p —po)?.

Sketch of proof. We need to show that f(h, Qm) —
f(h) is unbounded for any finite m. This is easy since
1_9(’;%5) - ﬁ goes to infinity when g approaches 1 or
1 — ¢ (Equation 7).

gt+e 9 _ 15
1—(g+e) 1-g (g+e-1)(g-1)

(7)

This implies that, even after an arbitrarily large sam-
ple has been observed (that is smaller than the whole
database), the utility of a hypothesis with respect to
the sample can be arbitrarily far from the true utility.
The picture does not change when we require f(h, Q)
only to be within a multiplicative constant. When
a sampling algorithm uses all but very few database
transactions as sample, then the few remaining exam-

ples may still impose huge changes on f(h, Q,,) which
renders the use of sampling algorithms prohibitive.

6. Experiments

In our experiments, we want to study the order of
magnitude of examples which are required by our al-
gorithm for realistic tasks. Furthermore, we want to
measure how much an improvement our sequential al-
gorithm achieves over a “static” algorithm that deter-
mines the sample size with worst-case bounds.

We implemented a simple subgroup discovery algo-
rithm. Hypotheses consist of conjunctions of up to
k attribute value tests, continuous attributes are dis-
cretized in advance. The non-sequential algorithm
that we use determines a sample size M like our al-
gorithm does in step 2, but using the full available
error probability § rather than only g. Hence, the non-
sequential algorithm has a lower worst-case sample

size than the sequential one but never exits or returns
any hypothesis before that worst-case sample bound
has been reached. Sequential and non-sequential sam-
pling algorithm use the same normal approximation
and come with identical guarantees on the quality of
the returned solution.

For the first set of experiments, we used a database of
14,000 fruit juice purchase transactions. Each transac-
tion is described by 29 attributes which specify prop-
erties of the purchased juice as well as customer at-
tributes. The task is to identify subgroups of cus-
tomers that differ from the overall average with re-
spect to their preference for cans, recyclable bottles, or
non-recyclable bottles. We studied hypothesis spaces
of size 288 (k = 1, hypotheses test one attribute for
a particular value), 37,717 (k = 2, conjunctions of
two tests), and 3,013,794 (k = 3). Since § has only
a minor (logarithmic) influence on the resulting sam-
ple size, all results presented in Figure 1 were ob-
tained with § = 0.1. We varied the utility function;
the target attribute has three possible values, so we
used the utility functions fi = g1 3% | |pi — po,

fo=g?1 30 Ipi—po,), and f3 = /gL S0, Ipi—po,

Figure 1 shows the sample size of the non-sequential
algorithm as well as the sample size required be-
fore the sequential algorithm returned the first (out
of ten) hypothesis and the sample size that the se-
quential algorithm required to return the last (tenth)
hypothesis and terminate. The sequential algorithm
tends to terminate significantly earlier than the non-
sequential one; as € becomes small, the relative benefit
of sequential sampling can reach orders of magnitude.
Consider, for instance, the linear utility function and
k =1,e = .1, = .1 where the sequential algorithm
can return the first hypothesis after 9,800 examples
whereas the non-sequential algorithm returns the so-
lution only after 565,290 examples.

)

For the second set of experiments, we used the data
provided for the KDD cup 1998. The data contains
95,412 records that describe mailings by a veterans
organization. Each record contains 481 attributes de-
scribing one recipient of a previous mailing. The tar-
get fields note whether the person responded and how
high his donation to the organization was. Our task
was to find large subgroups of recipients that were
particularly likely (or unlikely) to respond (we used
the attribute “Target-B” as target and deleted “Tar-
get_D”). Our hypothesis space consists of all 4492 at-
tribute value tests.

Figure 2 displays the sample sizes required by the se-
quential and the non-sequential sampling algorithm
Note that we use a logarithmic (log,q) scale on the

y axis. Although it is fair to say that this is a large-
scale problem, the sample sizes used by the sequential
sampling algorithm are in a reasonable range for all
three studied utility functions. Less than 10,000 ex-
amples are required when ¢ is as small as 0.002 for
f =glp—po| and f = ¢*|p — po| and when € is 0.05
for f = \/glp — po|- The relative benefit of sequen-
tial over non-sequential sampling is between one and
three orders of magnitude. For instance, in Figure 2a
(e = 0.002) the non-sequential algorithm requires over
107 examples (of course, much more than are available)
whereas the sequential one needs about 10*2.

7. Discussion and Related Results

Sequential analysis is a very promising approach to
reducing the sample size required to guarantee a high
quality of the returned hypotheses. Sample sizes in
the order of what the Chernoff and Hoeffding bounds
suggest are only required when all hypotheses exhibit
identical empirical utility values (in this case, identi-
fying which one is really best is difficult). In all other
cases, the single best, or the n best hypotheses can be
identified much earlier.

In essence, the problem settings of sequential analy-
sis (Wald, 1947), incremental learning (e.g., Greiner,
1996) and database sampling (e.g., Toivonen, 1996)
are equal. In each case, data is processed sequen-
tially and the hypothesis space updated in each step.
The learning algorithm is to determine when sufficient
data has been processed and no further data needs
to be collected. The setting differs from most defi-
nitions of active learning (e.g., Cohn et al., 1996) in
the fact that the algorithm determines the number of
examples it needs, but it does not query specific (re-
gions of) instances that it considers helpful. Also, the
setting differs fundamentally from the online learning
setting (e.g., Ben-David et al., 1997) where the target
hypothesis needs to be identified exactly after finitely
many steps.

The main contribution of this paper is a generalization
of sequential analysis to utility functions that cannot
be expressed as an average over all instances. We can
thus cover popular utility functions used in data min-
ing such as g|p—po| where both g and p are an average.
Known machine learning and knowledge discovery al-
gorithms that exploit the general idea of sequential
analysis (e.g., Maron & Moore, 1994; Greiner, 1996;
Domingo et al., 1999 do not cover such utility func-
tions. Our algorithm requires a utility confidence in-
terval specific for each class of utility functions. We
presented such intervals for most of the popular func-
tions in KDD and showed that there is no such inter-

val for one class of functions. Another small but useful
generalization is that our algorithm finds the n approx-
imately best hypotheses which is often appropriate for
knowledge discovery tasks.

Note that the presented algorithm differs quite
strongly from the less practical algorithm presented by
Scheffer and Wrobel (2000). Both the use of confidence
intervals and the use of empirical variances in deter-
mining the individual intervals for each hypothesis are
important extensions, and are crucial for achieving the
kind of empirical results reported in Section 5.

Our algorithm represents all hypotheses in the current
hypothesis space explicitly. In its current form, it it
therefore only applicable when the hypothesis space is
relatively small, as is the case, for instance, with as-
sociation rule and subgroup discovery. Note, however,
that the core of our algorithm is the sequential mech-
anism which it employs to determine the sample size
that suffices to guarantee a high quality of the solution
for the given problem. This mechanism can in princi-
ple also be combined with implicit representations of
the hypothesis space (used in most machine learning
algorithms). Future work should address this issue.

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H.,
& Verkamo, A. (1996). Fast discovery of association
rules. Advances in Knowledge Discovery and Data
Mining.

Ben-David, S., Kushilevitz, E., & Mansour, Y. (1997).
Online learning versus offline learning. Machine
Learning, 29, 45.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and regression trees. Pacific
Grove.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Ac-
tive learning with statistical models. Journal of Ar-
tificial Intelligence Research, 4, 129-145.

Dodge, H., & Romig, H. (1929). A method of sampling
inspection. The Bell System Technical Journal, 8,
613-631.

Domingo, C., Gavelda, R., & Watanabe, O. (1999).
Adaptive sampling methods for scaling up knowledge
discovery algorithms (Technical Report TR-C131).
Dept. de LSI, Politecnica de Catalunya.

Freund, Y. (1998). Self-bounding learning algorithms.
Proceedings of the International Workshop on Com-
putational Learning Theory (COLT-98).

Greiner, R. (1996). PALO: A probabilistic hill-
climbing algorithm. Artificial Intelligence, 83.

Haussler, D. (1992). Decision theoretic generalizations
of the PAC model for neural net and other learning
applications. Information and Computation, 100,
78-150.

Haussler, D., Kearns, M., Seung, S., & Tishby, N.
(1996). Rigorous learning curve bounds from sta-
tistical mechanics. Machine Learning, 25.

Klosgen, W. (1992). Problems in knowledge discovery
in databases and their treatment in the statistics

interpreter explora. Journal of Intelligent Systems,
7, 649-673.

Klosgen, W. (1996). Explora: A multipattern and mul-
tistrategy discovery assistant. In Advances in knowl-
edge discovery and data mining, 249-271. AAAIL

Langford, J., & McAllester, D. (2000). Computable
shell decomposition bounds. Proceedings of the In-
ternational Conference on Computational Learning
Theory.

Maron, O., & Moore, A. (1994). Hoeffding races: Ac-
celerating model selection search for classification
and function approximating. Advances in Neural
Information Processing Systems (pp. 59—66).

Piatetski-Shapiro, G. (1991). Discovery, analysis, and
presentation of strong rules. Knowledge Discovery
in Databases (pp. 229-248).

Scheffer, T., & Wrobel, S. (2000). A sequential sam-
pling algorithm for a general class of utility func-
tions. Proceedings of the International Conference
on Knowledge Discovery and Data Mining.

Scheffer, T., & Wrobel, S. (2001). Find-
ing the most interesting patterns in o database
quickly by using sequential sampling (Technical Re-
port). University of Magdeburg. http://kd.cs.uni-
magdeburg.de/~scheffer /papers/.

Toivonen, H. (1996). Sampling large databases for as-
sociation rules. Proc. VLDB Conference.

Uthurusamy, R., Fayyad, U., & Spangler, S. (1991).
Learning useful rules from inconclusive data. Knowl-
edge Discovery in Databases (pp. 141-158).

Wald, A. (1947). Sequential analysis. Wiley.

Wrobel, S. (1997). An algorithm for multi-relational
discovery of subgroups. Proc. First European Sym-

posion on Principles of Data Mining and Knowledge
Discovery (PKDD-97) (pp. 78-87). Berlin.

