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Abstract. In propositional learning, boosting has been a very popular
technique for increasing the accuracy of classification learners. In first-
order learning, on the other hand, surprisingly little attention has been
paid to boosting, perhaps due to the fact that simple forms of boosting
lead to loss of comprehensibility and are too slow when used with stan-
dard ILP learners. In this paper, we show how both concerns can be ad-
dressed by using a recently proposed technique of constrained confidence-
rated boosting and a fast weak ILP learner. We give a detailed description
of our algorithm and show on two standard benchmark problems that
indeed such a weak learner can be boosted to perform comparably to
state-of-the-art ILP systems while maintaining acceptable comprehensi-
bility and obtaining short run-times.

1 Introduction

In recent years, the field of Machine Learning has seen a very strong growth of
interest in a class of methods that have collectively become known as ensemble
methods. The general goal and approach of such methods is to increase predic-
tive accuracy by basing the prediction not only on a single hypothesis but on
a suitable combination of an entire set of hypotheses. Boosting is a particularly
attractive class of ensemble methods since on the one hand it has originated in
theoretical studies of learnability, but on the other hand has also been developed
into practical algorithms that have demonstrated superior performance on quite
a broad range of application problems. Boosting constructs multiple hypotheses
by first calling a “weak” learner on the given examples to produce a first hypoth-
esis. During each subsequent round of boosting, the weight of examples correctly
handled by the hypothesis induced in the previous round is decreased, while the
weight of examples incorrectly handled is increased. In the resulting set of hy-
potheses, each hypothesis gets a voting weight corresponding to its prediction
confidence, and the total prediction is obtained by summing up all these votes.

Given the set of boosting approaches in propositional learning, it is somewhat
surprising that boosting has not received comparable attention within ILP, with
a notable exception of Quinlan’s [8] initial experiments. There are two possible
reasons for this situation which appear especially relevant. Firstly, understand-
ability of results has always been a central concern of ILP researchers beyond
accuracy. Unfortunately, if, as in Quinlan’s study, one uses the classic form of



confidence-rated boosting (Adaboost.M1) the result will be quite a large set
of rules each of which in addition has an attached positive or negative voting
weight. To understand the behaviour of one rule in this rule set, it is necessary
to consider all other rules and their relative weights, making it quite difficult
to grasp the results of the learner. Secondly, in propositional learning, boost-
ing is often applied simply by using an unchanged existing propositional learner
as a basis. If one carries this over to ILP (e.g. Quinlan simply used FFOIL as
a base learner), the run-times of such a boosted ILP learner clearly would be
problematic due to the high effort already expended by a typical ILP system.

In this paper, we show that both of these concerns can be addressed by suit-
ably combining recent advances in boosting algorithms with a fast weak learner.
In particular, we show how constrained confidence-rated boosting (CCRB), which
is our denomination and interpretation of the approach described in [2], can be
used to significantly enhance the understandability of boosted learning results
by restricting the kinds of rule sets allowed. We combine this with a greedy top-
down weak learner based on the concept of foreign links introduced in Midos [14]
which uses a limited form of look-ahead and optimizes the same heuristic crite-
rion as used in [2]. In an empirical evaluation on two known hard problems of ILP,
the well-studied domains of mutagenicity and Qualitative Structure Activity Re-
lationships (QSARs), we show that indeed such a simple weak learner together
with CCRB achieves accuracies comparable to much more powerful ILP systems,
while maintaining acceptable comprehensibility and obtaining short run-times.

The paper is organized as follows. In section 2, we review boosting, and mo-
tivate the basic ideas of constrained confidence-rated boosting based on [2]. In
section 3, we briefly describe our foreign link based weak learner and give a
more detailed account of the heuristic evaluation functions employed to guide
the search in the constrained hypothesis space. Section 4 details how the hy-
potheses generated by the weak learner are used in the framework of CCRB.
Our experimental evaluation of the approach is described and discussed in sec-
tion 5. In section 6, we discuss related work in more detail. Section 7 contains
our conclusions and some pointers to future work.

2 Boosting

Boosting is a method for improving the predictive accuracy of a learning sys-
tem by means of combining a set of classifiers constructed by a weak learner
into a single, strong hypothesis [10,8,7]. It is known to work well with most
unstable classifier systems, i.e. systems where small changes to the training data
lead to notable changes in the learned classifier. The idea is to “boost” a weak
learning algorithm performing only slightly better than random guessing into an
arbitrarily accurate learner by repeatedly calling the weak learner on changing
distributions over the training instances and combining the set of weak hypothe-
ses into one strong hypothesis. In the resulting set of hypotheses, i.e. the strong
hypothesis, each hypothesis gets a voting weight corresponding to its prediction
confidence, and the total prediction is obtained by summing up all these votes.



A probability distribution over the set of training instances is maintained.
The probabilities model the weights associated with each training instance and
indicate the influence of an instance when building a classifier. Initially, all in-
stances have equal influence on the construction of the weak hypotheses. In each
iterative call of the learner, a weak hypothesis is learned, which computes a
prediction confidence for each example. How this confidence is determined is
a design issue of the weak learning algorithm and will, for our approach, be
discussed in detail in section 3.2.

On each round of boosting, the distribution over the training instances is
modified in accordance with the learned weak hypothesis, i.e. in dependence of
its assigned prediction confidence and the examples covered by it. The weights
of misclassified instances are increased and, in analogy, those of correctly clas-
sified instances are decreased according to the confidence of the learned weak
hypothesis. Thus, correctly classified instances will have less influence on the
construction of the weak hypothesis in the next iteration, and misclassified in-
stances will have a stronger influence. That way, the learner is confronted in
each new round of boosting with a modified learning task and forced to focus
on the examples in the training set which have not yet been correctly classified.
Finally, all weak hypotheses learned are combined into one strong hypothesis.
An instance z is classified by the strong hypothesis by adding up the prediction
confidence of each weak hypothesis covering & and predicting the class y of x
as positive if the sum of confidences of all hypotheses covering z is positive,
otherwise predicting y as negative.

The classic form of (unconstrained) confidence-rated boosting (Adaboost.M1)
yields quite a large set of rules each of which in addition has an attached pos-
itive or negative voting weight. Moreover, each weak hypothesis may vote with
different confidences for different examples. This way, rules inferring the target
predicate are learned as well as rules for the negation of the target predicate.

In our ILP setting, we will, in contrast, firstly assume that the weak learner
produces on each iteration a hypothesis in form of a single Horn clause
H « Ly,Ls,---, L, [c] with an associated real number ¢, where H is the atom
(X1, -+, Xq(p)) and p the target predicate of arity a(p), the L; are atoms with
background predicates p;, and ¢ represents the prediction confidence of the hy-
pothesis. This prediction confidence is used as the voting weight of the hypothesis
on all examples covered by it, where large absolute values indicate high confi-
dence. Moreover, we will restrict the weak hypothesis to vote “0” to abstain on
all examples not covered by it.

Thereby, the semantics of a rule is, as opposed to usual ILP practice, deter-
mined by the sign of its attached prediction confidence. A hypothesis
H « Ly,Ly,---, Ly [c] such that ¢ > 0 implies that H is true. It is interpreted
as classifying all instances covered by it as positive with prediction confidence
c. H [c] such that ¢ < 0 implies that H is false and is interpreted as classifying
each instance as negative.

Here is an example of a boosting result consisting of 7 weak hypotheses when
learning a target predicate p.



L p(X) « q(X,a). [0.2] 4. p(X) + a(X,Y), v(Y). [-0.6]
2. p(X) + q(X,Y), r(Y). [0.9] 5. p(X) + r(X). [-0.5]
3. p(X) + s(X). [0.1] 6. p(X) « q(X,b). [-0.3]

7.pX) + t(X) [-0.9]

In order to classify a new instance about which we know ¢(1,a), v(a), t(1),
s(1), we need to check which hypotheses cover this example. Here, we find that
1,3,4,7 cover the example, so we compute the sum of their confidences, yielding
0.240.1-0.6—0.9 = —1.2 < 0, and the instance is classified as negative. In other
words, to understand the behaviour of one rule in this rule set, it is necessary
to consider all other rules and their relative weights, making it quite difficult to
grasp the results of the learner.

In our approach of constrained confidence-rated boosting, which is our inter-
pretation of the ideas in [2], we will restrict each hypothesis to either of two
forms. A hypothesis is either positively correlated, i.e. predicting the positive
class, and equipped with a positive prediction confidence, or it is the default
hypothesis p(X1,---, Xq(p)) with an assigned negative confidence. Constraining
the hypotheses to either of these two forms ensures that the resulting set of
hypotheses can be more easily interpreted. Namely, in order to appraise the
quality of a hypothesis, it suffices to consider its assigned prediction confidence
in proportion to just the weight of the default hypothesis, instead of having to
consider all other hypotheses and their assigned weights.

Using the additional restrictions, we see for the above example that with
CCRB only results of the following form would be allowed, making learning
harder but guaranteeing better understandability:

1. p(X) « q(X,a). [0.2] 4.p(X).[-0.3]
2. p(X) « q(X,Y), r(Y). [0.9]
3. p(X) « s(X). [0.1]

Since the same weak hypothesis might be generated more than once by the
weak learner, we can further simplify the set of resulting hypotheses by summa-
rizing hypotheses H [c1],---, H [cn],1 < i < n, which only differ with regard to
their assigned confidences. A set of such identical hypotheses can be replaced by
a single hypothesis H' [¢], H' = H;,1 <i<n, with c= >, ¢.

The constraint on the weak hypotheses requires the weak learner to employ
a search strategy guaranteeing that only positively correlated hypotheses with a
positive prediction confidence are learned, or that the default hypothesis is opted
for if no such positive correlated hypothesis can be induced from the training
instances. [2] offer a theoretically well founded heuristics for this problem which
will be discussed in more detail in the following sections.

3 The Weak Relational Learner

Our greedy top-down weak learner is using a refinement operator based on the
concept of foreign links introduced in Midos [14]. This refinement operator is



elucidated in detail in the following section. We will then discuss in section 3.2 the
heuristics guiding the search of the greedy weak learner based on this refinement
operator in the hypothesis space. In Table 1, we give a more concise description of
the weak greedy learner embedded into the framework of constrained confidence-
rated boosting. In the following, references to steps in Table 1 will be indicated
by “T1.7.

3.1 The Refinement Operator

The refinement operator p is based on the concept of foreign links introduced in
Midos [14]. The hypothesis space consists of non-recursive, function-free Horn
clauses C = H <+ B, where H is the atom p(Xj,---, a(p)) and p the target
predicate of arity a(p). In order to constrain the complexity of the hypothesis
space, our weak learner employs a foreign literal restriction [14] as declarative
bias which is a constrained form of linkedness of clauses. When specializing a
clause C' by adding a new literal L, L must share at least one variable with
previous literals in C. The foreign literal restriction further confines the set of
alternative literals by means of an explicit definition of those literals and variable
positions that are to be considered for refinement. Hypotheses are only refined
along link paths designated by these definitions, or so called foreign links. For
a clause C = Ly,---,L,, a foreign link between a variable V first occurring at
position p; in literal L; with predicate name r, and a different variable U first
occurring at position p; in L; with predicate name s is defined as r[p;] — s[p;].

Furthermore, we employ a limited form of look-ahead in our refinement op-
erator in order to avoid the shortsightedness problem with respect to existential
variables in the hypotheses generated by the greedy weak relational learner.
Merely introducing new existential variables in a clause will probably not lead
to notable changes, and the greedy learner is apt to rather select a literal that
restricts existing variables. Thus, when specializing a clause C into C' = C, L
by means of adding a new literal L to C, we concurrently add to the set p(C) of
refinements of C' all specializations of C' obtained by successively instantiating
the new variables in L.

Given, for example, a target predicate active/1, a predicate atm/3, and a
foreign link declaration active[l] — atm[1], applying p on C' = active(X;) would
result in the specializations

active(Xl) — atm(Xl, Xs, X3),

active(X;) + atm (X1, ¢, X3),

active(X1) « atm(Xy,cl, X3),

active(X;) « atm(X1, X, X3), X3 < —0.782,

a,ctive(Xl) — atm(Xl,Xz, 3) X3 > —0.782,

active(Xl) «— atm(Xl,Xz, 3) 3 < 1.002,

active(Xl) — atm(Xl,XQ,Xg) X3 > 1.002,

if X5 is a nominal variable with the domain {c,cl}, and X3 is a continuous
variable with discretization D = [—0.782,1.002].



More generally, let L = r(V1,---, V() be aliteral with predicate name r of
arity a(r), and let Vars(L) denote the variables in L not occurring in the clause
C to be specialized. Then, adding C' = C,L to p(C) results in additionally
adding to p(C) the following refinements:

1. C,L67,1 <i<a(r),l <j<|Val(V;)|, such that V; € Vars(L) and V; is a
variable with nominal values, where Val(V;) denotes the domain of variable
V and LGJ = T(Vvla . m—l;%/cja V;+17 Tt 7Va(r))7cj € Val(‘/;)

2. C,L,p(V, ) 1 <4 < a(r) such that V; € Vars(L) and V; is a variable with
continuous values. p(V;) is defined for variables V; with continuous values as
follows. If D = {dy,---,d,} is the discretization of the values of V;, then for
any d in D V; < dy and V; > dj, are in p(V;).

Let C = L4,---, L, be a clause to be specialized, and let Uy, - - -, Ug—1, Ug+1,

-, Uqy(s) be new variables not occurring in C. Let a(r) denote the arity of a

literal with predicate name 7, and let Val(V') denote the domain of a variable

V. Furthermore, let F' be the set of all foreign links defined for the literals

at hand. Then the refinement operator p can be defined as follows: for any
L; =r(Vi,--+,Va)) in C such that r[m] — s[k] € F,

1. L17"' (U17"'7Uk—17Vm7Uk+17"'7Ua(s)) Ep(C)
2. Ly,--- nas(Ula"'7Uk—1;Vm7Uk+17"'7Ua(s))el] EP(C)

for 1 < 1 <a(s),1<j<|Val(U;)],U; a variable with nominal values
3. L17 "7 n,$ 17"'7Uk717VM7Uk+17"'7Ua(8))7p(Ul) Gp(C)

for 1 <1 < a(s),U; a variable with continuous values.

3.2 Search Strategy

Our weak first-order inductive learner accepts as input instances from a set
E = Et U E~ of training examples along with a probability distribution D
over the training instances. The background knowledge is provided in form of a
set B of ground facts over background predicates. However, we will sometimes
write ET and E~ somewhat differently than used in ILP, and will say that
E={(z,1) |z € ET}U{(z,-1) | =z € E~}.

To avoid overfitting in the weak learner, the training instances are randomly
split into two sets, G, P, used to specialize clauses and to prune these refine-
ments later on, respectively. Starting with the target predicate, the weak learner
greedily generates specializations which are positively correlated with the train-
ing instances and thus have a positive prediction confidence on the training set.

When thinking about strategies to guide the search of a greedy learner, en-
tropy based methods like information gain represent an obvious choice. However,
the theoretical framework of boosting provides us with a guiding strategy based
on one of the specific features of boosting, namely the probability distribution
being modified in each iterative call of the weak learner.

As suggested by [2], the training error can be minimized by searching in each
round of boosting for a weak hypothesis maximizing the objective function



AC) =aer. (Vor(G:0) ~ Vo (G0)) )

which is based on the collective weight of all positive and negative instances in
G covered by clause C. For a clause C' and a set S, the two weight functions
w4, w_ are defined by

w4 (C,S) =dey. > D; (2)
(zi,y;)ES covered by C,y;=1
w_(C,S) =dey. Z Dt

(zi,y;)ES covered by C,y;=—1

Since clauses C' maximizing z(C') may be negatively correlated with the pos-
itive class, we restrict, as proposed in [2], the search to positively correlated
clauses, i.e. to clauses maximizing the objective function Z defined as

2(0) =aes. Vwi(C,G) — Vw_(C,G). 3)

The refinement operator p of the weak relational learner iteratively refines, as
described in detail in section 3.1, the clause C currently maximizing the objective
function Z until either a clause C' is found with hitherto maximal Z(C") that
covers only positive examples, or until the objective function Z can not be further
maximized (T1.2d).

The positively correlated clause C' resulting from this greedy refinement pro-
cess is subject to overfitting on the training instances, and is thus immediately
examined to see whether it can be pruned. Namely, all generalizations of C' re-
sulting from deleting single literals and constants in C' from right to left are
generated (T1.2e).

The objective function (3) is only maximized on the set G based on which
rules are generated by the weak learner. However, the evaluation of the prediction
confidence of a weak hypothesis is based on the entire set of training examples.
Thus, it is possible for the weak learner to learn a hypothesis C'[c],¢ < O,
which is, on the entire training set, negatively correlated with the positive class.
Such hypotheses are not considered in order to ensure the constraint for a weak
hypothesis to be either positively correlated or to be the default hypothesis.
Thus, generalizations of C' which have a non-positive prediction confidence on
the whole training set are ruled out (T1.2f). If no generalization of C' with a
positive prediction confidence exists, the default hypothesis is chosen as current
weak hypothesis (T1.2g). The prediction confidence of a clause C on a set S is

defined as
1 <w+(C,$) + ﬁ)

C(C, S) :def. 5 ln w_ (C7 8) n ﬁ (4:)

where N is the number of training instances and ﬁ is a smoothing constant
applied to avoid extreme estimates when w_(C,S) is small.

All generalizations of C' with a positive prediction confidence on the entire
training set are then evaluated with respect to their confidence on the set G and



their coverage and accuracy on the set P. This kind of evaluation is proposed by
[2] who define, based on the definition of the loss of a clause C' with associated
confidence ¢(C, G) of [2], a loss function for a clause C as

1055(C) =ges. (1 — (w4(C,P) + w_(C,P))) (5)
+ wy(C,P) . e(—e(C9) 4 w_(C,P) . e(e(C.9)

This loss function is minimized over all generalizations of C' with a positive
prediction confidence (T1.2(h)i).

In a last step, the positively correlated generalization C' of C' with minimal
loss(C") is compared to the default hypothesis with respect to the expected
training error (T1.2(h)ii). Since a positively correlated clause is compared to
the default hypothesis predicting the negative class, the objective function to be
maximized is in this case z as defined in equation (1). Whichever of these two
hypotheses maximizes z is chosen as the weak hypothesis of the current iteration
of the greedy learner.

4 Constrained Confidence-Rated Boosting of a Weak
Relational Learner

In this section, following [2], we explain how the weak hypotheses generated in
each iteration of the weak greedy learner are used in the framework of CCRB
[2]. The weak learner is invoked T times. Let C; denote the weak hypothesis
generated in the ¢-th iteration based on the refinement operator and the heuristic
search strategy described in the previous section.

C; is used in function h; : X — R,

c(Cy, E if e = (x,y) is covered by C,
ht(x):{o( t, ) olse (x,y) y Gt

mapping each instance z to a real-valued number, i.e. to the prediction confidence
of Cy on the entire training set if z is covered by C;, and to 0 otherwise (T1.2i).
Before starting the next round of boosting, the probability distribution over
the training instances, which is initially uniform, is updated by means of hy,
namely by determining ,
¢ _ D;
Di = mey ©)
This way, the weights of all instances z not covered by the weak hypothesis
C4, i.e. such that hs(z) = 0, are not modified, whereas the weights of all positive
and negative instances covered by C; are decreased and increased, respectively,
in proportion to the prediction confidence of C; (T1.2j) by means of h;.
Then, the sum of the resulting weights is normalized
DY
Ditl' = - 1<i<N 7
= g SIS, ™)

so as to serve as the probability distribution of the next iteration.




Table 1. Constrained Confidence-Rated Boosting Algorithm

Let N denote the number of training instances e = (x;,3,) € E = ET U E™, p the
target predicate of arity a(p), and let T' denote the total number of iterations of the
weak learner. Furthermore, let wy,w_ denote the weight functions defined according
to equation (2), ¢(C,S) the prediction confidence of a clause C on a set S defined
according to equation (4), and Z the objective function defined according to equation

1. Set Dj := L for 1<i< N
2. Fort=1...T

(a) Split training set F randomly into G and P according to D; such that
(wi,y:)€G Dlt' ~ %
(b) C = p(X1, ety Xa(p))
(c) Z:=0
(d) While w_(C,G) >0
i. Let C' := argmawzcrepc){Z2(C")}
ii. Let Z' := 2(C")
iii. If 2’ — Z < 0 exit loop
iv. Blse C:=C', Z := Z'
) Prunes(C) := {p(X1, -, Xop) < B | C=p(X1, -+, Xaw)) < BB’}
) Remove from Prunes(C) all clauses C' where ¢c(C',E) <0
(g) If Prunes(C) =0 let Cy := p(X1,- -, Xo(p))
(h) Else
i. C' = argmingy cprynes(c){loss(C")}, where loss(C") is defined accord-
ing to equation (5)

2
ii. Let Cy := argmamcue{cz,p(Xl,...,Xa(p))}{(\/w_,_(Cu’ G) — \/w_ (C",g)) }
(i) ht: X — R is the function

c(Cy, E if e = (x,y) is covered by C,
hi(z) = {0( t, E) dlee (x,5) y Gt

(j) Update the probability distribution D; according to

t th'
U e(yithi(wi))
= D! if e = (%4, y:) not covered by C
{ > D} if e covered by C; and e € E~
< Dt if e covered by C; and e € E*

!
Dy

2D

DIt = 1<i<N

3. Construct the strong hypothesis

H(.’I:) 1= sign (ECt:(ac,y) covered by C} C(Ct’E))




After the last iteration of the weak learner, the strong hypothesis is defined
by means of all weak hypotheses induced by the training instances. For each
instance x the prediction confidences of all hypotheses covering x are summed
up. If this sum is positive, the strong hypothesis classifies = as positive, otherwise
z is classified as negative:

H(z) := sign Z c(Cy, E) (8)

Cy:(z,y) covered by C;

5 Empirical Evaluation

We conducted an empirical evaluation of our approach to CCRB on two do-
mains, namely on the domain of mutagenicity [13], which is a thoroughly inves-
tigated benchmark problem for ILP learners, and on the domain of Quantitative
Structure Activity Relationships (QSARs), another important test-bed for ILP-
systems [4, 5]. The weak learner is invoked T' = 100 times. Although the number
T of iterations can be automatically determined by cross-validation [2], we treat
T as fixed in our experiments.

Mutagenicity: The task is to predict the mutagenicity of a set of small,
highly structurally heterogeneous molecules (aromatic and heteroaromatic nitro
compounds). Mutagenic compounds are often known to be carcinogenic and to
cause damage to DNA. Not all compounds can be empirically tested for mutage-
nesis, and the prediction of mutagenicity is vital to understanding and predicting
carcinogenesis. A molecule is described by its atoms, the bonds between them,
global properties of and chemical structures present in the molecule.

Several relational descriptions of the domain are available [12], ranging from
a weakly structured description Bz only involving the atoms and bonds of the
molecules, to a strongly structured description By also involving high level chemi-
cal concepts present in the molecules. We conducted our experiment with C2RIB,
which stands for Constrained Confidence-Rated ILP Boosting, on the strongly
structured description B, restricted to a subset of 188 so called regression-
friendly compounds 125 of which are classified as having positive levels of muta-
genicity. The predictive accuracy is estimated by 10-fold-cross-validation, where
we used the same folds as [12] for their experiments with Progol. The accuracy
obtained in our experiment with C2RIB is displayed in Table 2 together with
reference results on the 188—dataset using background knowledge B4 and the
sources from which the results are reported. Runtime! of C2RIB averages to 7
minutes for 100 iterations, as compared to 307 minutes for Progol on all 188 com-
pounds (the run-time for Progol was determined in experiments we performed
on our sparc SUNW, Ultra-4, in which we obtained the same accuracy as [13]).

In Table 2, we show only results obtained on the most comprehensive set
of background knowledge, B4, which we have worked with.2 As can be seen

1 All run-times are referring to results obtained on a sparc SUNW, Ultra-4.
?> Additional results have been obtained by other authors on the Bs dataset [12], in
particular by STILL [11] (87 £ 8) and G-Net [1] (91 + 8).



from the table, C2RIB performs on par with other ILP learners on the 10-fold-
cross-validation data sets of the mutagenicity domain. Moreover, the results are
obtained in reasonable time, and the final hypotheses represent fairly compre-
hensible results. The number of literals in the final hypothesis averages to 64
(32 clauses on average, where the body of each clause averagely comprises two
literals), as compared to the result of averagely 46 literals in the hypotheses ob-
tained by FOIL as published in [12]), and 28 literals on average in the hypotheses
obtained by Progol. A final hypothesis obtained by C?RIB is displayed in Table
3 in the appendix.

QSARs: The task is to construct a predictive theory relating the activity of
chemical compounds to their molecular structure. Often, these so called Qual-
itative Structure Activity Relationships cannot be derived solely from physical
theory, and experimental evidence is needed. Again, not all compounds can be
empirically evaluated, and machine learning methods offer a possibility to inves-
tigate QSARs. We conducted our experiments on a 5-fold-cross-validation series
of 55 pyramidine compounds as described in [5]. A pyramidine compound is
described by chemical groups that can be added at three possible substitution
positions. A chemical group is an atom or a set of structurally connected atoms
each of which is described by a set of chemical properties. QSARs problems are in
general regression problems, i.e. not a class but real numbers must be predicted.
To get around this problem for ILP, the greater activity relationship between
pairs of compounds is learned. Rules learned for this relationship can then be
employed to rank drugs by their activity. As opposed to [4,5], we restrict our
experiments to the prediction of the greater activity relationship between pairs
of the 55 compounds.

We conducted experiments on the same data sets with the systems Progol [6]
and FOIL [9] in order to obtain reference results on this domain (Table 2). The
predictive accuracy obtained by C2RIB on the 5-fold-cross-validation data sets
of QSARs domain is slightly higher than the ones obtained with the other two
systems (however still within the range of the standard deviations). Runtime of
C?RIB averages to 57 minutes for 100 iterations, as compared to 372 and 0.7
minutes for Progol and FOIL, respectively. The number of literals in the final
hypotheses obtained by C2RIB averages to 142 (71 clauses on average, where
the body of each clause averagely comprises two literals), as compared to 140
and 154 literals on average in the hypotheses obtained by FOIL and Progol,
respectively. The fact that FOIL yields good results in very short run-times
suggests to investigate why FOIL’s heuristics are so successful and how elements
of FOIL could be incorporated in our weak learner.

6 Related Work

The work described in this paper is based on recent research in the area of
propositional boosting, and centrally builds on Cohen and Singer’s [2] approach
to constrained confidence-rated boosting. However, the properties of the weak
learner embedded in the boosting framework, namely the declarative bias em-



Table 2. Accuracy, standard deviation, average run-time and number of literals in the
final hypotheses on the 188 — B4 mutagenicity dataset and the QSARs dataset

C’RIB [FOIL Fors Progol
Mutagenicity|Accuracy £+ StdDev |88.0 £ 6.0({82.0 £ 3.0 [13](89.0 £ 6.0 [3]|88.0 + 2.0 [13]
@ Runtime (minutes)|7 n/a n/a 307
@ Number of literals |64 46 n/a 28
QSARs Accuracy + StdDev [83.2 +3.0(82.9 £2.7 n/a 79.8 £3.7
@ Runtime (minutes)|57 0.7 n/a 372
@ Number of literals {142 140 n/a 154

ployed in form of a foreign literal restriction, the application of look-ahead, and
the preclusion of hypotheses negatively correlated with the positive class, dis-
tinguish our work from the approach of [2].

The ILP work probably closest related to our approach is that of Quinlan
[8]. However, Quinlan uses, in conjunction with Adaboost.M1, a standard ILP
learner (FFOIL), so that the boosted ILP learner can be expected to produce
fairly large run-times due to the high effort already expended by FFOIL. More-
over, FFOIL itself generates as the first-order learner embedded into the boosting
framework weak hypotheses each of which comprises a set of clauses. Thus, the
resulting strong hypothesis is apt to be highly complex. Lastly, this approach
works, due to the absence of a confidence measure, with equal voting weights
for all weak hypotheses, and, instead of a probability distribution over the train-
ing instances a re-sampling procedure is used to approximate the weights of the
examples.

The weak learner employed in our approach is based on the refinement oper-
ator and declarative bias in form of foreign links introduced in Midos [14]. Ad-
ditionally, a limited form of look-ahead has been employed in order to avoid the
shortsightedness problem with respect to existential variables in the hypotheses
generated by the greedy weak relational learner.

7 Conclusion

In this paper, we have presented an approach to boosting in first order learn-
ing. Our approach, which we have termed constrained confidence rated boosting,
builds on recent advances in the area of propositional boosting; in particular,
it adapts the approach of Cohen and Singer [2] to the first order domain. The
primary advantage of constrained confidence rated boosting is that the resulting
rule sets are restricted to a much simpler and more understandable format than
the one produced by unconstrained versions, e.g. AdaBoost.M1, as it has been
used in the only prior work on boosting in ILP by Quinlan [8]. On two standard
benchmark problems, we have shown that by using an appropriate first order
weak learner with look-ahead, it is possible to design a learning system that



produces results that are comparable to much more powerful ILP-learners both
in accuracy and in comprehensibility while achieving short run-times due to the
simplicity of the weak learner.

These encouraging results need to be substantiated in future work, in partic-
ular in the direction of examining other points in the power/run-time trade-off
of the weak learner. The current weak learner has short run-times and already
reaches comparable results to other non-boosted systems, but it appears possi-
ble to make this weak learner slightly more powerful by adding in more of the
standard elements of ”full-blown” ILP-learners. While this would certainly slow
down the system, it would be an interesting goal of further research to determine
exactly the right balance between speed and accuracy of the weak learner.

This work was partially supported by DFG (German Science Foundation),
project FOR345/1-1TP6.
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A Sample Output from C?RIB

Table 3. A strong hypothesis obtained from C>*RIB

DEFAULT RULE:
active(A). [-1.40575]

POSITIVE RULES:
active(A) « logp(A,C),C>2.0,logp(A,D),D<4.0. [0.00082336]
active(A) « lumo(A,C),C> -2.0,lumo(A,D),D< -1.2. [0.0210132]
active(A) « logp(A,C),C>2.0. [0.115733]
active(A) < lumo(A,C),C> -2.0,logp(A,D),D<3.0,atm(A,E,F,29,G). [0.175073]
active(A) « atm(A,C,D,35,E). [0.176489]
active(A) « atm(A,C,D,1,E). [0.197106]
active(A) <« ringSize5(A,C). [0.215675]
active(A) «+ atm(A,C,D,27,E). [0.231689]
active(A) < lumo(A,C),C< -1.2. [0.283592]
active(A) < lumo(A,C),C> -2.0,atm(A,D,E,29,F). [0.355777]
active(A) « logp(A,C),C>5.0. [0.470995]
active(A) «+ bond(A,C,D,5). [0.582912]
active(A) « atm(A,C,D,26,E),atm(A,F,G,1,H),lumo(A,I),I< -1.2. [0.584057]
active(A) « atm(A,C,cl,D,E),bond(F,C,G,H). [0.763684]
active(A) + atm(A,C,D,26,E),logp(A,F),F>3.0. [0.778605]
(
(
(
(
(
(
(
(
(
(
(
(
(
(

active(A) « atm(A,C,D,27,E),ringSize5(A,F). [0.925553]
active(A) « atm(A,C,D,230,E). [0.977438]

active(A) « logp(A,C),C>3.0,ringSize5(A,D). [1.00485]
active(A) « atm(A,C,D,16,E). [1.01437]

active(A) < atm(A,C,D,32,E),bond(F,G,C,2). [1.1001]
active(A) « carbonbaromaticRing(A,C). [1.4434]
active(A) < bond(A,C,D,3). [1.46341]

active(A) « lumo(A,C),C< -2.0. [1.64408]

active(A) <« ringSize5(A,C),logp(A,D),D>4.0. [1.69492]
active(A) « atm(A,C,D,28,E). [1.69956]

active(A) < anthracene(A,C). [2.21461]

active(A) « carbon6Ring(A,C). [3.06628]

active(A) < phenanthrene(A,C). [3.55481]

(
(
active(A) «+ atm(A,C,D,27,E) logp(A,F),F>2.0,logp(A,G),G<3.0. [0.832673]
(
(




