Combining a Formal with an Example-driven
Approach for Data Integration

Ingolf Geist Kai-Uwe Sattler Ingo Schmitt
Department of Computer Science
University of Magdeburg

P.0.Box 4120, 39016 Magdeburg, Germany
{geist|kus|schmitt }@iti.cs.uni-magdeburg.de

Abstract

Integrating data sources is a general problem in many scenarios. The main problem is the
heterogeneity between data sources which were created and developed separately. In the
literature there exist many different approaches to solve that problem. Schema integration
approaches derive an integrated schema by resolving conflicts on schema and data model
level. Another kind of approaches are multidatabase languages and systems which define
and verify views on top of example databases. They try to map local data to a predefined,
integrated schema. In this paper we investigate how the schema integration approach GIM
and the example-driven approachBA basing on RAQL can be combined for a new
combined approach. The combined approach benefits from the powerful mapping language
FRAQL and the verification feature by using example databases and from the extensional
analysis of the GIM approach. We discuss the advantages of such a combined approach
and show its potential in many integration scenarios.

1 Introduction

The problem of integrating data from heterogeneous sources is addressed by various approaches
developed in the previous years. However, in most cases these approaches assume a scenario,
where a new global and integrated schema has to be derived and instance-level conflicts are
considered afterwards or separately. Recently, integration approaches where proposed which
focus on alternative or complementary paradigms, e.g. a yo-yo-like approach or example- and
data-driven techniques.

Considering more complex integration tasks in real-world scenarios with (partially) given
global schemas, e.g. based on domain reference models, an approach combining formal schema
integration with example-driven analysis and conflict resolution seems to be most promising.
Based on our previous work in the field of data integration we present in this paper our ideas on
such a combined approach.

The remainder of this paper is organized as follows. In Section 2 we introduce our previ-
ously developed integration techniques. Based on this, we discuss a combined method address-
ing the definition of mappings between global and local schemas as well as the resolution of
schema-level and instance-level conflicts in Section 3. Section 4 gives an overview of available
tools and sketches their usage as part of an integrated tool set for the combined method. Finally,
in Section 5 we discuss related work and conclude the paper in Section 6.

Library: Publication Project: Publication

Title Title
Author Author
Book Journal-P. Non-Refereed Journal-P.
ISBN Organization Pubno Organization
/ \ Volume
Book Techn.-Rep.
ISBN TRno
Publisher

Figure 1. Library and Project Schema

2 Formal vs. Example-driven Integration

2.1 GIM Method

Schema integration [BLN86] is the process of generating one homogeneous database schema
from several, heterogeneous source schemas. Besides the integrated schema the integration
produces appropriate schema mappings. A complex task is to overcome schema heterogeneity.
This step typically consists of detecting semantic conflicts and then of solving these conflicts
by designing new schemas and corresponding schema mappings. After having solved all con-
flicts, the schemas can be merged into an integrated schema. In our [BiddA Fpg we
developed the schema integration metlk&t [SS98, SS99, Sch98]. GIM is an acronym for
Generic Integration Modet an intermediate data model and stands simulataneously for a spe-
cific integration method. This model is designed for schema integration. The GIM approach
enables the usage of algorithms from formal concept analysis [GW98] increasing the portion of
schema integration which can be performed automatically. In the following, the GIM-Method

is sketched by an example. Assume, there is a library database storing information about pub-
lications, where books and journal papers are special types of publications. Each publication
is either a book or a journal paper. This database has to be integrated with a project database
that stores project publications. This database distinguishes more types of publications. Fig. 1
depicts the corresponding schemas of both databases.

Before these schemas are integrated, conflicts have to be resolved. Here we consider exten-
sional and intensional conflicts only. We assume that other types of conflicts are resolved before
as described, e.g., in [LNE89, SPD92]. Extensional conflicts refer to potential object redundan-
cies among different classes whereas intensional conflicts are caused by different object types
of semantically related classes. The schemas define extensional subset relationships between
sub- and superclasses and relationships due to integrity constraints. In general, it is impossible
to completely conclude from given databases and integrity constraints whether the extensions of
an arbitrary set of classes from different databases can simultaneously contain objects modeling
same real-world objects. Therefore, the designer has to give additional information about the
extensional relationships among the classes.

Knowing the potential extensional overlaps the original potential extensions can be decom-
posed into disjoinbase extensiongf, for example, the classes andB extensionally overlap
then their extensions are decomposed into three base exten&iqr3,8 \ A,A N B). The
algorithm presented in [ST98] computes the base extensions from extensional assertions and is
implemented in th&IGMA gench

The base extensions of our example are given in Fig. 2. In our example, the original exten-

ILocal Classes |1]2][3|4|5]|6]7]8]9]

Library.Publication VIV VIV
Library.Book v v
Library.Journal-Paper v v
Project.Publication VIVIVIVIVI VIV
Project.Non-Refereed v aRans v
Project.Journal-Paper v v v
Project.Book v v
Project.Technical-Report v v

Figure 2: Extensional Relationships

AttrExt [1]2]3|4]5[6]7]8]9]
Title VIVIVIVIVIVIVIVI]V
Author VIVIVIVIVIVIVIVI]V
ISBN v v v
Organization v v v v
\Volume v v v
Publisher v v
TRno v v

Pubno v VIV |V v

Figure 3: Extension-Attribute Relation

sions are partitioned into base extensitr8. For example, the extensi@ook of the database
Library is partitioned into the base extensidhend9. The base extensioh contains books

from the library database which are simultaneously stored in the project database whereas the
base extensiofh contains the remaining ones. Each publication, which is stored in the library

or in the project database (or in both), can be assigned to exactly one base extension.

Now we have to compare the intensional aspects of the two schemas. For simplicity, we
assume attributes with same names have identical semanticsftriéyte conflictLNE89]
are assumed to be resolved before.

From the given extensional and intensional information we can automatically derive a table
that assigns attributes to base extensions. A tick symbol for a column (base extension) and a
row (attribute) means that for potential objects of that base extension we know the value of that
attribute (Fig. 3).

This table representation is a simplified GIM representation of the integrated schemas and
can be directly used for further analyses. The order of columns and rows is irrelevant. By
exchanging rows and columns we only obtain other representations. In such a representation a
rectangle corresponds to a class: a union of base extensions having the same set of attributes.
Moreover, we may detect subclass relationships using the rectangle representation of classes. If
rectangles overlap, then they are in a specialization relationship. Algorithms of formal concept
analysis [GW98] find all maximal rectangles and extensional subset relations among them. A
maximal rectangle represents a class of the integrated schema. The algorithm presented in
[SS98], which is a slight modification of the concept analysis algorithm, finds the following
classes (maximal rectangles) from Fig. 3:

C1=({1,2,3,4,5,6,7,8,9} {Title,Author})
C2 = ({4,6,8},{Title,Author,Organization,Volume })

Publication (C1)

Title
Author

T

Journal-P. (C8) Book (C4) Non-Refereed (C7)
Organization ISBN Pubno

ProJournal-P. (C2) ProBook (C3) Techn.-Rep. (C6)
Volume Publisher TRno

Figure 4: Integrated Schema

C3 = ({5,9},{Title,Author,ISBN,Publisher,Pubno })

C4 = ({1,5,9},{Title,Author,ISBN1)

C5 = ({6},{Title,Author,Organization,Volume, TRno,Pubno })
C6 = ({3,6},{Title,Author,TRno,Pubno})

C7 = ({3,5,6,7,9},{Title,Author,Pubno})

C8 = ({2,4,6,8},{Title,Author,Organization})

Now we build the matrix)/ which represents the irreflexive binary relatien It expresses

the specialization relation (subset relation) by comparing the extensions of each pair of classes.
Two classes are in specialization relation if their sets of base extensions are in a subset relation.
The computatiol/y = M — M x M removes transitive specializations. The classes C1,

C8 andMy can be directly used to produce the integrated schema as depicted in Fig. 4. The
names of the integrated classes correspond as near as possible to the classes of the two existing
databases.

2.2 Example-driven Integration

After the description of the integration method using GIM we want to discuss a second inte-
gration technique: thExample-driven IntegratianThis approach is a supplement to the GIM
method and assumes, that a preliminary integrated schema already exists. Such an integrated
schema can be created by global requirements or by using a domain reference model. Given
the integrated schema, example-driven integration is the process of creating iteratively and in-
teractively mappings between local schemas and the global schema driven by evaluation of the
current data. During this process integration conflicts between global and local schemas have
to be resolved which can lead to a refinement of the integrated schema. An integration step
consists of two phasescenflict resolutiorandanalysis— which are performed iteratively.

The input of the example-driven approach is formed by the global schema, the local schemata
and the local data. Further, interaction with the user is required. The output is a mapping be-
tween the local sources and the global schema as well as the refinement of the global schema.
Thus, a technology is needed that is powerful enough to resolve conflicts and that permit a uni-
fied access to the local datslultidatabase systenand their query languages (e.g. [GLRS93,
TAH196, LSS96]) form a basis for example-driven integration. We will utilize the language
FRAQL? [SCSO00] for our purposes.

!FedeatedQueryL anguage

This query language resolves schema and data conflicts by creating view definitions. There
exists two different kinds of views: import and integration relations. These definitions allow
the resolution of following integration conflicts: attribute conflicts, structure conflicts, meta
conflicts, extensional conflicts (only for two sources) as well as same-object conflicts and data
value conflicts. For details of the conflict resolution features see [SCS00]. Within the view
definitions mapping functions and tables are used resolving same-object conflicts and data con-
flicts. These functionalities support the first part of the integration — the conflict resolution. The
example-driven integration approach can be described in the environment of multi-database
systems as an interactive and successive definition of integrating views.

Since the integration conflict resolution is a complex task an iterative process has to be
considered. Therefore the single steps are created using a approach inspired EBIQHE. A
table view is used to specify the integration task by giving examples and showing the integration
results immediately. Thereby the special conflict resolution operatioreQE are taken into
account. Additionally an iconic view of the integration graph is given which forms the view
definition. This definition can be changed intuitively.

After the description of the first phase we want to discuss the second phase: the evaluation
of the created — possible intermediate — results of the view execution. We use the facilities of
FRAQL to execute the created views. So, the access to the resulting data is possible. Different
analysis methods have to be used for the various conflict resolution steps. They can be simple
gueries or also more complex functions. The results of the analysis are interpreted by the user.
Based on these interpretations the integrator refines the integrated schema.

Conflicts occur in different ways during the integration steps. The analysis phase tries to
identify these conflicts. The occurrence mill valuesand null column$ can indicate that
structure conflicts are not handled in the global schema. One reason can be that one or both
sources do not have enough information to fill out the global schema. Therefore the integrated
schema has to be refined or additional sources have to be added.

A second point is the evaluation of correspondence assertions, that means, the examina-
tion of extensional relationships between the classes. The first step is using cardinalities as
a heuristic function for discovering possible problems according to same-object conflicts or
wrong assumptions about the assertions. Fig. 5 shows the expected cardinalities for results of
the union operation. If there is a conflict, the user can apply set oriented operations to get more

| assertion| expected cardinality: card(R) |
Ry = Ry | card(R) = card(R,) = card(Ry)

Ry C Ry | card(R) = card(Ry)

Ry N Ry | max(card(Ry),card(Rs)) < card(R) < card(Ry) + card(R2)
Ry # R, | card(R) = card(Ry) + card(Ry)

Figure 5: Cardinality heuristic®2 = R; U R»

detailed results about the nature of the conflict. But the evaluation of extensional relationships
requires a previous solution of the same-object conflict.

The verification of a same-object conflict solution is another application area of data oriented
integration. A created mapping table or function can be evaluated on the data. Thereby data
mining techniques are useful.

2Queryby Example
3All values of the column are null.

The attribute value conflicts can be discovered by following steps. The first step is the
computation of an outer join of the local relations. Second, we can compare the corresponding
values by using a user-defined function. There are two cases of different values. The first
case indicates that the supposed mapping is not correct. For instance, an attribute conflict is not
resolved, and the mapping and/or the integrated schema have to be modified. The second reason
of data conflicts are data errors or different update times of the local systems. Data errors can
only be handled in the local data sources, but an examination of an example set of error pairs
can provide an idea about which local system is more reliable. Thereupon a mapping function
can select in a conflict case the value from the more trustworthy source.

3 An lterative Method for Defining Schema and Instance Map-
pings

In the previous section we introduced the schema integration method GIM and the example-
driven approach. They are used in different scenarios. Whereas the schema integration creates
an integrated schema, it is already given for the example-driven approach. Different to the
schema integration the example-driven approach creates views on example databases which
allow an interactive definition of views and data mappings. Both approaches, however, have to
overcome conflicts caused by schema and data heterogeneity. In the following we will examine
how both approaches can be combined for different scenarios.

3.1 Scenario discussion

There are many different scenarios where the combination of the GIM and the example-driven
approaches makes sense. We can at first separate scenarios with predefined integrated schema
from scenarios without predefined integrated schema.

Scenario without given integrated schema

This is the classical schema integration scenario. The integrated schema is produced by the
schema integration process. The example-driven approach can be used to check the integrated
schema and the schema mappings against the current databases states. The check can be per-
formed after the integration process has been completed as well as after every single integration
step. The result can be used for refinement.

Scenario with given integrated schema

This scenario is the more interesting scenario. In many situations we already have an inte-
grated schema. Due to the integrated schema we have in addition to horizontal schema conflicts
vertical conflicts as depicted in Fig. 6.

Schema integration is designed to overcome horizontal conflicts and the example-driven
approach to solve vertical conflicts. The question arises whether it is better to resolve horizontal
first or vertical conflicts first. If we start to reconcile horizontal conflicts there is a good chance
that we do not move forward to the integrated schema, that is, many vertical conflicts have to be
resolved afterwards. If we build a schema by schema integration there is a high probability of
vertical conflicts between it and the given integrated schema. The problem is caused by the fact
that the schema integration does not consider the given integrated schema. One way to avoid this
problem would be to regard the integrated schema as the third local schema. After the schema

integrated schema

vertical schema conflicts

horizontal schema conflicts
local schema 1 local schema 2

horizontal data conflicts
database 1 database 2

Figure 6: Horizontal and vertical conflicts

integration produced a new schema all mappings between the original local schemas and the
original integrated schema are defined over the new integrated schema. Since the integrated
schema is considered as a local schema there can occur many unnecessary mappings.

A better approach is to resolve vertical conflicts first since resolving vertical conflicts re-
solves most horizontal conflicts implicitly (on resulting intermediate schema levels). But it is
not as easy as it looks like. Vertical conflict resolution means to overcome the conflicts between
the integrated schema and one local schema. But not all conflicts can be regarded as purely
vertical conflicts. In the following we list the different kinds of conflicts which can be resolved
without knowledge of the parallel local schema:

structure conflict: An attribute in one schema is a class in the other schema.

attribute conflict: There are different attribute value representations. One attribute can en-
compass more information than another one. Sometimes, mapping functions are required
to bridge different attribute values semantically.

meta conflict: One attribute value in one schema can correspond to a class in another
schema in the sense that all objects have implicitly the same meta value.

intensional conflict: Equivalent classes of the integrated schema and a local schema can
have different sets of attributes.

The following remaining conflicts cannot be resolved in a purely vertical manner:

extensional conflict: The extensions of local classes stand in specific relationships. The
goal in this scenario is to define mappings which relate local extensions to the integrated
schema. But at the same time horizontal, extensional overlappings must be considered
since they express redundancy to be dealt with. Defining extensional mappings in con-
sideration of horizontal extensional conflicts can cause intensional conflicts: for some

objects there are no values for the required attributes of the correspondirfg class

4Since global updates are not supported in our scenario we ignore conflicting integrity constraints here.

e same-object detection: Database objects from different local databases referring to same
real-world objects need to be detected.

e data conflict: In case of redundant data between the local databases there can exist differ-
ences of attribute values although they should be same. This occurs, for example, if one
local database contains newer data than the other one.

In the following subsection we will discuss the resolution of vertical conflicts. In Section 3.3
we focus then on the non-vertical conflicts.

3.2 Views for Resolving Vertical Conflicts

The first step in our proposed method is the resolution of conflicts between the global schema
and each local schema separately. This is usually supported in multidatabase languages and
federated database systems by defining views on local relations. In the following we discuss
the resolution of vertical conflicts using th& KQL language. However, most examples pre-
sented here could be translated to other languages or systems, e.g. IBM DataJoiner [VZ98],
SchemaSQL [LSS96] or Pegasus [ASEL].

FRAQL provides a view mechanism that distinguish between two kind of views: import and
integration views.

An import viewis a projection of a local relation of a data source. The import view is
defined by specifying the source relation and, if required, a mapping between local and global
attributes.

create view global _name of type _name
as import from source.local _name
[mapping _definitions I;

In the view definition given above, the attribute mapping can be described in the following
variants:

e Without an explicit mapping, a local attribute corresponding to an attribute, defined by
the global object type, in terms of identifier and type becomes an attribute of the global
relation.

e The notationg_nameis |_.namemeans renaming the local attribute gmame This
requires type compatibility.

e The notatiorg_nameis func(Lname)defines that the global attribute value is calculated
by using the user-defined conversion functioncon the local attribute value.

e The definitiong_nameis @tbl (I_-name, src, dest, default)eans that the database table
tbl is used for mapping the values from the local attributeeme The value of the
global attribute is obtained by looking for the value of attridutemein columnsrc and
retrieving the corresponding value of colurdast The fielddefaultdenotes a default
value, either as literal or as local attribute, which is assigned to the global attribute, if
the value ofl_nameis not found in the table. In fact, this kind of attribute mapping is
evaluated by a left outer join, where tiNJJLL value is replaced by the default value
default

The following example illustrates the usage of these mapping concepts: Given a source rela-
tion Book (isbn, title, category, retailer, price) an import could be defined, where the local
attributeretailer is mapped talealer, the values of attributeategory are mapped via a table
cat_map and the prices are converted into Euro prices:

create view Books of BookType as import from src.Book (
dealer is retailer,
category is @cat_-map (category, cat _src, cat _dest, NULL),
price is dollar2euro (price)

);

In this way, features like mapping functions or tables are particular helpful for resolving
structure, attribute and intensional conflicts.

The second kind of views is calladtegration viewand extends ordinary SQL views by
features like meta-data access and variable substitution. Variables of a query can not only
be bound to relations as tuple variables, but also to meta-data, like the set of attributes of
a relation or the set of relations of a schema. This was originally proposed in SchemaSQL
[LSS96]. But in contrast to SchemaSQL, where meta-data access in queries is implemented
as a language extension, in our approach the schema catalog is used. So, the catalog relation
catalog.columns contains information about attributes of all global relations, whereas the
relationcatalog.tables describes the global relations. Unlikely SchemaSQL, any global
user relation with information about other relations can be used as meta-data source.

As an extension to standard SQL, attributes of tuple variables in queries can be obtained
during evaluation. This means, while in SQL names of attributes and relations are constants,
in FRAQL they can be constructed from current values of other tuple attributesvaiigble
substitutionis written in the notatio®var and can appear everywhere in a query, where names
of attributes or relations are expected. For example, the expretgind(tbl2.col)
means the attribute value of the current tuple of relatidh , whose name is obtained from
the current value abl2.col

Variable substitution and meta-data access are useful for resolving meta conflicts. Assuming
a global relatiorBook (isbn, title, category, dealer, price) and a local relation as shown in
Fig. 7 the local relation can be restructured by the following view definition:

create view BookPrices of BookType as
select b.isbn, b.title, b.category, b.$(c.column _name),
c.column _name
from BookStore b, catalog.columns c
where c.table _name = ’'BookStore’ and
c.column _name = ’dealerl’ or c.column _name = ’dealer2’;

lisbn | title | category | dealerl]| dealer2|

123-XX | Database SystemsComputer Science 19.90| 21.90
234-YY | Data Warehouses Computer Science 43.50| 40.00

nY
e
n}
e

Figure 7. Meta conflict in tablBookStore

Ideally, based on these views the further steps of the integration process have only to con-
sider the remaining kind of conflicts, particularly extensional conflicts.

IClasses |1 |2 |3 |4]5]6|

Books VIV |V
Book VIiIVIVI IV |V
Textbook VIV
Buch vV |V

Figure 8: Extensional Relationships

3.3 Extensional conflicts

The GIM approach as well as the example-driven approach deal with extensional conflicts.
In the example-driven approach the binary extensional relationships are considered only. The
GIM approach, however, is not restricted to binary relationships but suffers sometimes from
hard to understandable extension tables. The problem with binary, extensional comparisons
occur if more than two classes are extensionally involved. This is possible even if only two
local databases are considered due to potential specializations between sub- and superclasses.
It can be easily shown that expressing extensional relationships among three classes cannot suf-
ficiently expressed by three binary assertions. Due to this argument we adopt the GIM approach
for dealing with extensional conflicts. We use the example-driven approach to check specified
extensional relationships.

As already described in Section 2.1 the potential extensions of the local classes must be
related to each other in an extension table. But what about the classes of the given integrated
schema? They do not have real extensions. But its designer has specific potential extensions
in her/his mind. If he names a claBgrson than he obviously does not expect to get books.

For the extensional analysis it is therefore important to relate the potential extensions of the
integrated schema classes to the extensions of the local classes. This has to be done in the one
extension table.

Consider the following example: One local schema contains the Blamis and a subclass
Textbook whereas the second local schema includes the Blagls. In the integrated schema
we have a clasBooks . In Fig. 8 we relate the four classes to each other by using background
knowledge about the potential local extensions and the intended extension dB @tdkss.

The problem is now to map the local extensions to the global extensions. We distinguish
four different cases:

1. set operation: The extension of a global class can be expressed by applying set opera-
tions to the local class extensions. An interesting question is here to find an optimal set
expression w.r.t. costs for different set operations.

In our example we can definBooks := Textbook U Buch.

2. selection: Unfortunately, it is not always possible to express a global extension by a set
expression. Sometimes we can additionally use a select operation since a local attribute
helps us to select a right subset of a local extension.

If in our example the clasBooks has the intended extension of 2-5, then there is no
way to distinguish base extension 1 from 2 by set operations. But we can use an attribute
of classBook to separate both base extensions. For example, the intended extension of
Books should not include poem books. If there is an attriiypee of classBook then

we can use it to exclude poem books.

3. gap: In this case the intended extension of a global class cannot be completely filled by

local potential extensions. There is no remedy for this case. The designer must decide, if
he changes the intended extension or even the integrated schema. He can also argue, that
the missing objects can come later from a third local database.

In our example we have a gap if the intended extension of Bas&ks includes base
extension 6.

4. else case: Here we have neither a gap nor a set expression is possible. Furthermore, no
selection can be found to generate the intended extension. This severe problem cannot
be solved by mapping. Similar to the previous case, the designer has to make the choice
between a change of the intended extension or a modification of the integrated schema.

We have this situation iBooks should not include poem books but there is no way to
distinguish poem books from other book types.

From the example-driven approach we can now adopt the extension check. We assume that
we already know how to detect same-objects. The extension check must be adopted to our
extension table. A correct extensional table means that every local object can be assigned to
exactly one base extension (one column). There are two kinds of error. First, for one local
object there is no corresponding base extension, e.g. an obj8ctcbf being not inBook.

Second, some base extensions are always empty, e.g. because there is no overlap as specified.
The example databases can now be used to detect those errors. Unfortunately, only the errors
of the first kind can be found. If a local object does not have a base extension then we have
to create a new base extension. However, if all local objects of the example databases can be
correctly assigned to their corresponding base extensions then we do not know whether this is
still the case when the local databases are updated.

After the extensional analysis has been finished we have to consider intensional conflicts.
We must check if for the extension of every global class all values for the specified attribute
can be derived. This can only be done completely if the extensional analysis has been finished.
For this check we create a GIM diagram which assigns attributes to base extensions. A tick
in a cell means that we have for every potential object of that base extension the value for the
corresponding attribute. Every global class can be regarded as a rectangle in the diagram. For
a correct mapping we require that every rectangle representing a global class contains no cell
without a tick.

If a rectangle contains empty cells then we have a conflict. A simple solution is to fill this
cell by generated null or default values. This solution is, however, only a small-scale solution.
Otherwise it would enable the generation of a universal table with too many null or default
values. The alternative to null values is again a modification of the integrated schema. As
modification the designer can drop an attribute or a base extension from the global class. If
there are too many conflicts and a modification is too complex then the designer can apply the
GIM algorithm to generate an new, integrated schema by using mechanisms of formal concept
analysis.

In addition to detecting extensional and intensional conflicts the GIM diagram can be used to
check specializations extensionally between global classes. A correct specialization means the
a subclass extension is always a subset of the superset extension. Since the integrated schema
has been designed at a time when the extensional mappings to the local classes were unknown
this kind of conflict can easily occur. If such a conflict happen then again the mappings or the
global classes must be modified.

Last but not least, if the extensional and the intensional analysis satisfies the requirement of
the integrated schema we have to deal with data conflicts. Data conflict means different attribute

values from different local databases for the same attribute and base extension. The designer
has to specify how global values can be derived from the local values.

From the result of the described steps we are now able to create the final mappings expressed
in FraQL.

4 Tool Support

Due to the complexity of the integration task, one-shoot strategies are often not realistic, partic-
ularly for larger projects. Thus, integration has to be considered as an iterative and interactive
process, that requires tool support enabling the definition and evaluation of global, integrated
views and mappings to the local schemas. This includes features like deriving and modifying an
integrated schema automatically as well as providing hints about potential conflicts and apply-
ing resolution functions in an interactively manner. In the following sections we present first the
already available tools supporting both integration paradigms separatly. Finally, we sketch how
these tool sets could be combined in order to meet demands of real-world integration scenarios.

4.1 VIBE - Visual Integration by Example

A prototype called VBE® was developed to support the example-driven approaciBENM$
developed in Java and accesses tRe@L via the standard database APl JDBRARL is

utilized for performing queries over heterogeneous data sources and defining the integrated
schema. The catalog oRRQL is used to store the integration information. The architecture is
shown in Fig. 9.

|

VIbE ‘ Data Queries ‘ ‘ Meta data queries‘
oG v | v A
Parser
go
£O
oa Decomoser
&

Query Evaluator \
Adapter Manager J
FraQL \Adapter\ . \Adapter\

Figure 9: Architecture example-driven integration

The tool combines interactive query generation and evaluation with the conflict resolution.
It takes as input the preliminary integrated schema that have to be mapped to the local schemas.
Therefore following steps are supported: selection of relevant sources, creating visually the

SVisuallntegratiorby Example

isbn title category dealer price | } relation schema
@map(...) * 1.18 | } mapping row

123-XX | Database SystemsComputer Science Amazon.com 21.90

234-YY | Data Warehouseg Computer Science B & N 40.00 } data view

231-ZZ | Web Databases | Computer Science Books & More 31.00

Figure 10: Import view editor

integration steps and analyzing result data visually. The visual input paradigm was chosen to
support the user in creating and analyzing the mapping.

The system tries to combine conflict resolution and analysis phase as tightly as possible. So
the defined views are evaluated as early as possible and the user can check the steps early.

VIBE provides several views on the data from the local sources as well as on intermediate
integration results. For example, teport view editordisplays the imported relation together
with mapping information (Fig. 10).

In the heading of the table the global attribute names defined by the specified type of the
relation are shown. The second row contains the mapping definition. Here, the name of the
corresponding local attribute is given. If a mapping function or a mapping table is required, its
name has to be inserted into the appropriate column. In addition, an expression can be entered,
that is automatically translated into an user-defined function. In the rows below the mapping
row the database integrator can specify QbE-like selection queries. These queries are evaluated
and the mapping is applied to the results. In this way, one receives direct feedback of the defined
mapping by inspecting the data.

Data conflicts are discovered by using a so-caledflict map This map is constructed
as follows: For a union as integration operation an outer join is computed and for each tuple
appearing in both input relations (which is determined by comparing the primary keys) the
corresponding attribute values are compared. Both values are presented in a single cell of the
map, where the color depends on the comparison result. If both values are equal the color of
the cell is white, otherwise red. Therefore, a red cell denotes an attribute conflict.

For a join as integration operation the map is constructed by applying an outer join, too.
In addition the coloring for the union operation, a further kind of conflict is considered. Null
values of attributes appearing in only one input relation are presented as yellow cells. So, these
cells can indicate key equivalence conflicts. In fact, not the actual values of the resulting tuples
are important, but the colors. Therefore, a compact representation of conflict spots is possible.
The user can zoom into the overview map and select points of interests for further examinations.

4.2 SigmaBench

Here we sketch the tool support for the GIM approach. In the future we will try to combine the
tool support in correspondence to the combined method.

We implemented the federated database design3l8&MA gench(see Fig. 11). This tool
was implemented according to a client-server architecture. Central inter-operation platform is
the repository that is realized using a relational DBMWARD). Clients for dedicated tasks are
developed in Java. Thide structure analyzecomprises different tools for the file structure
analysis if local databases are stored in files. Key words, tokens, and brackets can be found
semi-automatically based on text analysis. In this way, the design of grammars describing the
structure of file clusters is supported. Teehema loadeimports schemas from an Oracle
database to our repository. It uses the catalogue tables of the Oracle system and currently con-

SIGMA Bench

Schema Editor Repository Extensional Schema Integration
and Viewer Browser Relationship Editor Integrator Wizard

i

Schema YARD File Structure
Loader

Analyzer
LDBS1 LDBSH @\

SIGMA Bench SpeCTraC

ﬁ ﬁ Repostow
v

Figure 11: Architecture of th8IGMA gench

siders classes, attributes, data types, and integrity constraints. Current implementation work
extends this also to load user profiles including access rights.sd@tema editor and viewer
allows the definition and graphical representation of object-oriented schemas for storing them
in the repository. Of course, in “real” integration scenarios the schemas should be imported
from the local databases. The main issue of the schema editor is to make schemata available for
demonstration purposes. Thus, the editor offers classes, attributes, relationships, specialization,
and integrity constraints. Currently three kinds of integrity constraints are suppaortepie-
ness constraintBke unique (Book.Author, Book.Title), attribute-constant-comparisorgs-
cluding not null) such asBook.Price > 0.0, andcomparisons between two attributder
instance,Book.Title <> Journal.Title. These constraints can be composed to complex in-
tegrity constraints by means of logical operators. €kensional relationship edit@upports
the derivation of extensional relationships from integrity constraints fewgrnal.ISBN<"1-
2345” and Book.ISBN>"2-6789") and extensional assertions (eL@rary.Book disjoint to
Project.Book). The extensional relationships are expressed by an extension diagram which
correlates disjoint extensions and classes of the participating schemata. Besides the automatic
generation of the matrix using integrity constraints and extensional assertions, our tool also
allows its direct manipulation.

The main part oSIGMA genchiS theschema integratowhich automatically derives inte-
grated object-oriented schemata using the source schemata and the modeled extensional rela-
tionships. This tool covers extensional and intensional conflicts and supports the integration of
integrity constraints. The integration of access rights is currently in developmeninfégea-
tion wizard combines all necessary step for the federated schema generation. It includes the
assertion generatowhich currently supports attribute-constant-comparisons and specialization
relationships. S8ECTRAC® allows to specify (global) transactions with different dependencies
among them. The tool comprises a consistency checker which supports specifying consistent
dependencies. In case of an inconsistency, alternative dependencies are proposed. Due to the
fixed extensional assertions of the global schema, different commit rules can be derived for
global transactions.

4.3 Towards an Integrated Tool Set

The previously described integration toolsBB andSIGMA genchProvide advanced support

for data integration, but follow only their own integration paradighffGMA genchfocuses on

a complete formal approach, whereass¥lenables a data-driven and a more pragmatic way.
However, we believe that for real-world integration tasks both scenarios with and without a
given integrated schema are important and an alternate proceeding seems to be the best solution.

6A Tool for Specifying ConsistenflransactionClosures

For instance, a first coarse global schema — perhaps based on a domain reference model — is
given, which has to be extended and refined during the integration of the individual sources.
This approach could benefit from a combined usage of both tool sets. From a technical point
of view the integration of these tools is entailed with low effort only, because both systems are
implemented in Java and use a standard database API. Moreover, a multidatabase language like
FRAQL provides all the features required for accessing the sources, defining global views as
well as mapping and resolving conflicts.

Following the method described in section 3 we can sketch the integration process using the
tools in a combined manner as follows:

1. The global schema is designed using a interactive schema editor. The result of this step is
a set of global types and their relationships definedRA@L.

2. For each participating local database vertical conflicts between the local schema and the
global schema which is represented by the types from step 1 are resolved. For this purpose
the VIBE import view editor is used which displays the imported relation together with
the mapping information.

3. Inthe next step, the extensional analysis is performed usirf§ @A genchextensional
relationship editor, which has to be extended by extension checks discussed in section 3.3.
This step is additional supported by theBA data views including the described conflict
map. The result of this phase is a set of global views implementing the types resulting of
step 1 and accessing the intermediate views of step 2.

If the assumed extensional correspondences in step 3 are not fulfilled by the current data several
solutions are possible. First, the designer could return to step 2 refining the mapping. Second,
additional sources could be considered if available and finally, restarting with step 1 the global
schema could be adjusted in order to meet the requirements.

Particularly, during step 2 and 3 the 8 tools in combination with the multidatabase query
system provide a comprehensive view on the intermediate integration results. Even if these
views are only snapshots of the current database state, in many cases the remaining conflicts
can be visualized and as a results identified and resolved by the designer.

5 Related Work

The problem of schema integration in the context of multidatabases is a relatively old prob-
lem. There is a huge number of publications in this area. Integrations problems and solution
approaches in loosely coupled FDBS are discussed, for example, in [Wie92, ZHK96].

Very important for a schema integration is the choice of the right common data model in
which the schema integration is performed. The suitability of different data models as com-
mon data model is discussed in [BLN86, SCG91, HB96]. The favorite data model is usually
an object-oriented data model due to its semantical richness. As common data model for ho-
mogenization in the GIM approach we use the Generic Integration Model GIM which enables
an efficient algorithm to derive an integrated schema in a user-friendly data model. The data
model GIM was firstly introduced in [SS95, SS964].

The extensional conflict as one main conflict is topic of many publications, e.g. [DH84,
Mot87, MNES8S, Bra93, SGN93, TS93, KS95, NS96]. They usually resolve this conflict di-
rectly in an object-oriented model by using specialization. The original classes are often classes
of the integrated schema enriched by new super-/subclasses and specialization relationships

among them. [DS96], for example, suggests many operations to resolve a conflict between two
classes. Problems arise, however, if two specialization hierarchies with many classes need to be
integrated. The mentioned approaches generate in this case very complex schemata. Further-
more, different variants of conflict resolution are often possible. There are no strict rules which
help the designer. Therefore, the process of integrating specialization hierarchies is usually very
hard for the designer and produces often a huge number of new classes.

In contrast to these approaches, basing on a correct extensional analysis we firstly decom-
pose class extensions into base extensions and then use mechanisms of concept analysis. These
mechanisms perform the composing of base extensions to extensions of global classes. We try
to derive minimal schemata by finding maximal rectangles and by further reductions of super-
fluous classes.

The idea to use mechanisms of the formal concept analysis for the design of object-oriented
database is not new. [YLCB96], for example, uses this technique to generate a class hierarchy
depending on an intensional analysis. In contrast to our approach, however, [YLCB96] does
not consider extensional relationships and is therefore not useful for schema integration. In
[SS96a, SS96b, SC97, SS98] we described how to decompose class extensions for schema
integration. This decomposition enables us to use mechanisms of formal concept analysis for
schema integration. Our improved algorithm was firstly published in [SS98].

Query languages supporting the integration of heterogeneous sources are particularly mul-
tidatabase languages like MSQL [GLRS93], SQL/M [KG¥5] and SchemaSQL [LSS96].
MSQL provides basic features for accessing schema labels and converting them into data val-
ues. SQL/M addresses mainly description conflicts by providing mechanisms for scaling and
unit transformation. More advanced conflict resolution is addressed for example by the re-
structuring techniques proposed in SchemaSQL supporting the specification of relation with
data dependent output schemas. The languag&®E extends these by additional resolution
techniques for attribute and structure conflicts as well as data conflicts.

Examples of systems addressing reconciliation are systems like PegasusgHSihe
IBM DataJoiner [VZ98], Garlic [TAH 96] or TSIMMIS [GPQ"97]. Pegasus uses a functional
object-oriented data manipulation language called HOSQL with non-procedural features, Data-
Joiner is based on DB2 and therefore provides essentially standard SQL features for conflict
resolution. Garlic is a database middleware which uses a wrapper architecture to access dif-
ferent sources. Garlic provides an object-oriented extensions to SQL which allow for instance
extended conflict resolution. TSIMMIS is a mediator system. The mediator is specified by a
set of rules. Each rule maps a set of source objects into a virtual mediator object. In this way,
conflicts are resolved by defining appropriate rules.

Data-driven integration tools are for instance Clio [MHBL] and Potter’s Wheel [RHO1].

Clio is a semi-automatic tool for evaluating schema mappings by using example data. After
user analysis the schema mapping can be refined. Potter's Wheel uses scalable spreadsheets
to do data cleansing and transformation. The actual data is used for interpreting the transform
results.

6 Conclusions

Supporting different integration scenarios with a single method is often involved with limita-
tions. So, in this paper we sketched the combination of a formal method for schema integration
with a more pragmatic example-driven method. We believe that this approach is particular use-
ful in scenarios where a global schema is given and mappings can be checked using available

data. We further discussed how our available tools can be used in an integrated, iterative man-
ner. For further work, we plan to extend the approach by additional data-driven analysis tools,
e.g. for detecting wrong assignments of objects to extensions during the extensional analysis.
A second important task will be the integration of our tools into a homogeneous tool set guiding
the designer through the integration process.

References

[ASD*91]

[BLNS6]

[Bra93]

[DH84]

[DS96]

[GLRS93]

[GPQ*97]

[GW98]

[HB96]

[KGK +95]

[KS95]

[LNES9]

R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. A. Ketabchie, W. A. Litwin, A. Rafii, and M.-C.
Shan. The Pegasus Heterogeneous Multidatabase SyskEBESComputer24(12):19-26,
December 1991.

C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for
Database Schema IntegratiohCM Computing Survey48(4):323—-364, December 1986.

S. E. BratsbergEvolution and Integration of Classes in Object-Oriented Databagas-
sertation, The Norwegian Institute of Technology, University of Trondheim, June 1993.

U. Dayal and H. Y. Hwang. View Definition and Generalization for Database Integration
in a Multidatabase SystemEEE Transactions on Software Engineeriri(6):628-644,
November 1984.

Y. Dupont and S. Spaccapietra. Schema Integration Engineering in Cooperative Databases
Systems. In K. Yetongnon and S. Hariri, editdPsoc. of the 9th ISCA Int. Conf. on Parallel

and Distributed Computing Systems, PDCS’96, Dijon, France, Septemberddigss 759—

765, Six Forks Road, Releigh, NC, 1996. International Society for Computers and Their
Application.

J. Grant, W. Litwin, N. Roussopoulos, and T. Sellis. Query Languages for Relational Mul-
tidatabasesThe VLDB Journgl2(2):153-171, April 1993.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Uliman,
V. Vassalos, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and
LanguagesJournal of Intelligent Information Systent(2):117-132, March/April 1997.

B. Ganter and R. Wille.Formal Concept Analysis Springer-Verlag, Berlin/Heidelberg,
1998.

A. R. Hurson and M. W. Bright. Object-Oriented Multidatabase Systems. In O. A. Bukhres
and A. K. EImagarmid, editor®bject-Oriented Multidatabase Systems — A Solution for
Advanced Applicationshapter 1, pages 1-36. Prentice Hall, Eaglewoods Cliffs, NJ, 1996.

W. Kelley, S. Gala, W. Kim, T. Reyes, and B. Graham. Schema Architecture of the
UniSQL/M Multidatabase System. In W. Kim, editdvjodern Database Systemshap-
ter 30, pages 621-648. ACM Press, New York, NJ, 1995.

W. Klas and M. SchreflMeta Classes and Their Applications — Data Model Tailoring and
Database Integrationvolume 943 ol ecture Notes in Computer Scienc&pringer-Verlag,
Berlin, 1995.

J. A.Larson, S. B. Navathe, and R. Elmasri. A Theory of Attribute Equivalence in Databases
with Application to Schema IntegrationIEEE Transactions on Software Engineering
15(4):449-463, April 1989.

[LSS96]

[MHH +01]

[MNESS]

[Mot87]

[NS96]

[RHO1]

[SC97]

[SCGO1]

[Schosg]

[SCS00]

[SGNO3]

[SPD92]

[SS95]

[SS964]

L. V. S. Lakshmanan, F. Sadri, and |. N. Subramanian. SchemaSQL - A Language for Inter-
operability in Relational Multi-database Systems. In T. M. Vijayaraman, A. P. Buchmann,
C. Mohan, and N. L. Sarda, editoiRroc. of the 22nd Int. Conf. on Very Large Data Bases,
VLDB'96, Bombay, India, September 3—-6, 198&ges 239-250, San Francisco, CA, 1996.
Morgan Kaufmann Publishers.

Rene J. Miller, Mauricio A. Hernndez, Laura M. Haas, Ling-Ling Yan, C. T. Howard Ho,
Ronald Fagin, and Lucian Popa. The Clio Project: Managing HeterogenslitgMOD
Record 30(1):78 — 83, March 2001.

M. V. Mannino, B. N. Navathe, and W. Effelsberg. A Rule-based Approach for Merging
Generalization Hierarchiesnformation Systemd3(3):257-272, 1988.

A. Motro. Superviews: Virtual Integration of Multiple DatabasdEEE Transactions on
Software Engineeringl3(7):785—-798, July 1987.

S. Navathe and A. Savasere. A Schema Integration Facility Using Object-Oriented Data
Model. In O. A. Bukhres and A. K. EImagarmid, edito@bject-Oriented Multidatabase
Systems — A Solution for Advanced Applicati@mapter 4, pages 105-128. Prentice Hall,
Eaglewoods Cliffs, NJ, 1996.

Vijayshankar Raman and Joseph M. Hellerstein. Potters Wheel: An Interactive Framework
for Data Cleaning and Transformation. Working draft, 2001.

I. Schmitt and S. Conrad. Restructuring Class Hierarchies for Schema Integration. In
R. Topor and K. Tanaka, editorBatabase Systems for Advanced Applications '97, Proc.
of the 5th Int. Conf., DASFAA'97, Melbourne, Australia, April 1-4, 19%ges 411-420.
World Scientific Publishing, Singapore, 1997.

F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of Data Models as Canonical
Models for Federated Databas@«CM SIGMOD Record?20(4):44-48, December 1991.

I. Schmitt.Schema Integration for the Design of Federated Databagslsme 43 ofDis-
sertationen zu Datenbanken und Informationssysteimér-Verlag, Sankt Augustin, 1998.
(In German).

K.-U. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolution Features to a Query
Language for Database FederatioAsistralian Journal of Information Systen&(1):116—
125, 2000.

A. P. Sheth, S. K. Gala, and S. B. Navathe. On Automatic Reasoning for Schema Integration.
Int. Journal of Intelligent and Cooperative Information Systef{$):23-50, 1993.

S. Spaccapietra, C. Parent, and Y. Dupont. Model Independent Assertions for Integration of
Heterogeneous Schemdase VLDB Journgl1(1):81-126, July 1992.

I. Schmitt and G. Saake. Managing Object Identity in Federated Database Systems. In
M. Papazoglou, editorDOER’95: Object-Oriented and Entity-Relationship Modeling,
Proc. of the 14th Int. Conf., Gold Coast, Australia, December 198lme 1021 of ecture

Notes in Computer Sciengeages 400-411, Berlin, 1995. Springer-Verlag.

I. Schmitt and G. Saake. Integration of Inheritance Trees as Part of View Generation for
Database Federations. In B. Thalheim, edit@onceptual Modelling — ER’96, Proc. of

the 15th Int. Conf., Cottbus, Germany, October 198@ume 1157 ofLecture Notes in
Computer Scienggages 195-210, Berlin, 1996. Springer-Verlag.

[SS96D]

[SS98]

[SS99]

[STOS]

[TAH +96]

[TS93]

[VZ98]

[Wie92]

[YLCB96]

[ZHK96]

[ZI077]

I. Schmitt and G. Saake. Schema Integration and View Generation by Resolving Intensional
and Extensional Overlappings. In K. Yetongnon and S. Hariri, ediferg¢. of the 9th

ISCA Int. Conf. on Parallel and Distributed Computing Systems (PDCS'96), Dijon, France,
September 199(pages 751-758, Six Forks Road, Releigh, NC, 1996. International Society
for Computers and Their Application.

I. Schmitt and G. Saake. Merging Inheritance Hierarchies for Database Integration. In
M. Halper, editor,Proc. of the 3rd IFCIS Int. Conf. on Cooperative Information Systems,
CooplS’98, August 20—-22, 1998, New York, Ugages 322—-331, Los Alamitos, CA, 1998.
IEEE Computer Society Press.

I. Schmitt and G. Saake. Integrating Database Schemata using the GIM Method. Preprint 20,
Fakultt flr Informatik, Universiéit Magdeburg, 1999.

I. Schmitt and C. Uirker. Refining Extensional Relationships and Existence Requirements
for Incremental Schema Integration. In G. Gardarin, J. French, N. Pissinou, K. Makki, and
L. Bougamin, editorsProc. of the 7th ACM CIKM Int. Conf. on Information and Knowledge
Management, November 3—7, 1998, Bethesda, Maryland, pkgyes 322—-330, New York,
1998. ACM Press.

M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey, W. Cody, R. Fagin, P. M. Schwarz,

J. Thomas, and E. L. Wimmers. The Garlic Project. In H. V. Jagadish and I. S. Mumick,
editors, Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data, Montreal,

Quebec, Canadavolume 25 ofACM SIGMOD RecordACM Press, June 1996.

C. Thieme and A. Siebes. Schema Integration in Object-Oriented Databases. In C. Rolland,
F. Bodart, and C. Cauvet, editosdvanced Information System Engineering, Proc. of the
5th Conf., CAISE’93, Paris, France, June 1998lume 685 of_ecture Notes in Computer
Sciencepages 55-70, Berlin, 1993. Springer-Verlag.

Shivakumar Venkataraman and Tian Zhang. Heterogeneous Database Query Optimization
in DB2 Universal DataJoiner. In Ashish Gupta, Oded Shmueli, and Jennifer Widom, editors,
VLDB'98, Proceedings of 24rd International Conference on Very Large Data Bases, August
24-27, 1998, New York City, New York, Uages 685-689. Morgan Kaufmann, 1998.

G. Wiederhold. Mediators in the Architecture of Future Information SystéBtSE Com-
puter, 25(3):38-49, March 1992.

A. Yahia, L. Lakhal, R. Cicchetti, and J. P. Bordat. ,tOAn Algorithmic Method for
Building Inheritance Graphs in Object Database Design. In B. Thalheim, edaceptual
Modelling — ER’96, Proc. of the 15th Int. Conf., Cottbus, Germany, October, 1/886ne
1157 ofLecture Notes in Computer Scienpages 422-437, Berlin, 1996. Springer-Verlag.

G. Zhou, R. Hull, and R. King. Generating Data Integration Mediators that Use Material-
ization. Journal of Intelligent Information Systen®(2/3):111-133, June 1996.

M.M. Zloof. Query-by-Example: A Data Base Languad¢gM Systems Journall6(4):324
— 343, 1977.

