
Advanced Grouping and Aggregation for Data Integration �

Eike Schallehn Kai-Uwe Sattler Gunter Saake
Department of Computer Science, University of Magdeburg

P.O. Box 4120, D-39016 Magdeburg, Germany
feike|kus|saake g@iti.cs.uni-magdeburg.de

ABSTRACT
New applications from the areas of analytical data processing and
data integration require powerful features to condense and recon-
cile available data. As outlined in [1], the general concept of group-
ing and aggregation appears to be a fitting paradigm for a number
of these issues, but in its common form of equality based groups
or with current extensions like simple user-defined functions to de-
rive group-by values on a per tuple basis and restricted aggregate
functions a number of problems remain unsolved. We describe two
extensions to the grouping mechanism, a generic one to support
holistic user-defined grouping functions and higher level construct
that provides similarity based grouping suitable in a number of ap-
plications like duplicate detection and elimination.

1. INTRODUCTION
For the integration of information systems, mainly driven by

growing numbers of sources of related information in a global scope
like the WWW or in more local scenarios like various departments
of a company, inconsistencies and redundancy on the data level
have to be removed, and very often only condensed views of the
data are required. We propose a flexible approach based on gen-
eralized concepts for grouping and aggregation. While, in its cur-
rent form, this paradigm is limited to equality based grouping and
restricted aggregate functions, it can be a powerful operation if ex-
tended to support more complex intra-group relationships and ad-
vanced aggregate functions.

Similarity-based duplicate elimination is a common task in data
integration, and therefore used as an example application through-
out this paper, though the concepts introduced here are not limited
to this usage. Duplicate elimination can be considered a two-step
process consisting of entity identification and reconciliation. Dur-
ing entity identificationgroups of objects potentially describing the
same real-world object are created. Theentity reconciliationstep
uses the groups found during entity identification as an input to
derive one integrated representation for the real-world object rep-
resented by this group. This can be done by merging data, e.g. sum

�This research was partially supported by the BMBF (08SFB031)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

up the sales numbers of products from various business areas, or
by using additional knowledge about the integrated data, like for
instance data quality. So, user-defined as well as standard aggrega-
tion functions appear as an appropriate concept for reconciliation
tasks. Both steps are highly application-dependent, i.e. to support
similarity based duplicate elimination a system has to provide con-
cepts to describe the characteristics of both steps.

Currently thegroup by -operator as standardized is equality
based and works one tuple at a time, i.e. the identifier of the group
the tuple belongs to is derived considering only values of one tuple
and no implicit or explicit relationships between tuples. This is
also true for current extensions allowing user-defined functions as
a group by clause to derive values that are not in the domain of
any of the relations attributes. A simple example for the their usage
is:

select avg(temperature), rc
from Weather
group by regionCode (longitude, latitude)

as rc

However, complex relationships between tuples, that are for in-
stance not transitive or symmetric do not fit with these concepts,
and still require special algorithms for data processing, often in-
cluding domain-specific knowledge. Our goal is to offer ways to
separate generic from domain-specific aspects of common tasks in
data integration.

2. ADVANCED GROUPING
We present two proposals, the first being a specialized language

extension that offers optimization opportunities, and a generic one
based on user-defined functions, both implemented as part of an
extended query language for data integration. We do not intend to
finally answer the question, what the better approach would be, but
instead describe the trade off of criteria that motivated our current
implementation.

2.1 Grouping by Similarity
As an example of similarity based grouping consider the follow-

ing query that performs similarity-based duplicate elimination for
bibliographic records from three sources by describing a pairwise
similarity criterion and a strategy to build groups.

select pickBySource(title,source),
fullName(author)

from DBLP union SPRINGER union NCSTRL
group by transitive similarity
on sameText(title) and sameName(author)

or isbn
threshold 0.95

The similarity criterion is specified in theon-clause by a prob-
abilistic logic expression using system-defined (sameText) and
user-defined (sameName) functions taking advantage of domain
knowledge. System-defined methods can for instance be used for
common data types without taking advantage of knowledge about
the application-dependent semantics of the given attribute. As an
example we consider string attributes, where either vector repre-
sentations and according distance measures or the edit distance to
deal with typos etc. in shorter string representations can be applied.
The user-definedsameName-function in this case can exploit do-
main knowledge, like the fact that first names are often abbreviated
or names can be written “Lastname, Firstname”. These functions
can be implemented as two-parameter functions for comparing val-
ues from two tuples and return float values between 0 and 1 derived
from the distance measure. The usage of an attribute, likeisbn in
the example, compares two values for equality and returns either 0
or 1. The expression can be evaluated for two tuplest1 andt2 as
follows:

sima(t1; t2) := t1:a = t2:a

simf(a)(t1; t2) := f(t1:a; t2:a)

simA^B(t1; t2) := MIN(simA(t1; t2); simB(t1; t2))

simA_B(t1; t2) := MAX(simA(t1; t2); simB(t1; t2))

sim:A(t1; t2) := 1� simA(t1; t2)

Two tuples are pairwise similar if the evaluated logic expression is
above the specified threshold. The similarity relationship is intran-
sitive, hence, a further strategy to establish an equivalence relation
is required to build groups.

(a) (b)

Figure 1: Grouping by (a) transitive and (b) strict similarity

Two simple strategies are introduced here and illustrated in figure
1, their usefulness depending on a given application scenario. The
transitive closure strategy used in the example above builds
groups by simply considering the transitive closure of a tuple as its
group. This is a very loose strategy that may result in big groups
with potentially very different tuples. A more conservative strat-
egy would be thestrict similarity , that demands pairwise
similarity between all tuples within a group and splits the group in
case of a conflict. There is an unlimited number of possible strate-
gies that might become useful for specific applications.

2.2 User-defined grouping
Obviously, using grouping for duplicate identification and ag-

gregation for reconciliation depends heavily on the problem do-
main. Additionally, only in rare cases simple built-in aggregation
functions are sufficient for reconciliation purposes. Therefore, it is
necessary to support application-specific grouping and aggregation
functions, i.e., user-defined functions. Whereas user-defined aggre-
gation (UDA) is considered in the current SQL standard documents
and already supported by commercial database systems like In-
formix, Oracle8i or IBM DB2, to our best knowledge user-defined
grouping (UDG) was not addressed until now. SQL allows only

simple grouping by attributes and only some proposed OLAP ex-
tensions to SQL enable at least the usage of predefined functions as
grouping parameter.

Our query language FRAQL supports both concepts: UDA and
UDG. A UDA is implemented in FRAQL as an external class writ-
ten in C++ or Java. The interface of this class consists of the fol-
lowing methods:

public interface UDA f

void init ();
boolean iterate (Object[] args);
Object result ();

g

At the beginning of processing a relation, the methodinit is
called. For each tuple theiterate method is invoked. The fi-
nal result is obtained via the methodresult . Because a UDA
class is instantiated once for the whole relation the “state” of the
aggregate can be stored. Therefore, UDA functions can be used
for reconciliation, i.e., deriving a representative value from a group
of values representing the same real-world concept. The concept
of user-defined aggregation and its implementation in FRAQL is
described in more detail in [3].

In contrast to the common equality based grouping, if we want
to assign a tuple to a group based on attribute similarity, it has to
be compared to all current members of a group (or at least to one
representative) and to all groups. Depending on this comparison
we can decide on the group membership or possible group rear-
rangements. Similarity-based grouping is a special case ofcontext-
awaregrouping. Here the problem is, that the group membership
of a tuple can be determined not until all tuples of the relation are
processed. Furthermore, groups are not constant during processing
a relation, because groups could be split or merged due to similarity
relationships of new tuples. So, UDG functions are implemented
as classes with the following interface:

public interface UDG f

void init (Object[] args);
boolean iterate (long tid,

Object[] values);
void finish ();
void groupOpen ();
long groupNext ();
void tupleOpen (long gid);
long tupleNext (long gid);

g

The meaning of these methods is as follows, whereas the process-
ing is performed in two steps. Starting in the first step with a new
input relation theinit method is called for initialization purposes.
Then, each tuple is processed by invoking theiterate method
and finally thefinish method is called. Beforefinish the
group partitioning can change, but afterfinish was called, the
number of groups as well as the assignment of tuples are fixed.
In the second step, projection and aggregation are applied to the
individual groups. For this purpose, a UDG provides iterator-like
methods for navigating over the groups and their contained tuples.

The following example illustrates the principle of a UDG func-
tion.

The grouping function used in this example builds groups of
tuples with no gaps in the float values of columnA greater than
0:5. Basically this represents a special case of the transitive clo-
sure strategy, for which in this case efficient implementaions can
be provided easily. Furthermore, it is obvious that the UDG needs
not to store the whole tuple, but only a tuple id, which can be used
for retrieving the actual tuple during the second step.

A B
1.0 a
1.1 b
2.0 c
2.1 d
2.2 c
3.7 a

�!

A B
1.0 a
1.1 b
2.0 c
2.1 d
2.2 c
3.7 a

Figure 2: Grouping example for maximumDifference

The special treatment of context-aware grouping is expressed by
the additional keywordcontext in thegroup by clause:

select avg(A),min(B)
from FloatMap
group by context

maximumDifference(A,diff => 0.5)

Context-aware grouping is not a direct implementation of sim-
ilarity grouping described in the motivating example in section 2.
However, it forms a generic framework for implementing this kind
of grouping as well as other approaches like clustering etc. As an
example reconsider the query used to motivate grouping by similar-
ity at the beginning of this section. Using the more general concept
of user-defined grouping it can be expressed as.

select pickBySource(title,source),
fullName(author)

from DBLP union SRINGER union NCSTRL
group by context

transitiveSimilarity(isbn,title,
author, t => 0.95)

Anyway, it is obvious, that the functionality described before plus
potential optimizations have to be realized in the grouping func-
tion. This requires more implementation efforts and the resulting
implementation in this case is less flexible. An extended discussion
of these aspects and application issues are is included in [4].

3. IMPLEMENTATION AND
OPTIMIZATION

A dedicated solution for similarity-based grouping opens the pos-
sibility to apply special optimizations for avoiding the general cost
ofO(n2) for pairwise comparisons ofn tuples. Like equality based
duplicate elimination this can be optimized toO(n log n). For ex-
ample, the grouping operator benefits from special-purpose index
structures on grouping attributes, e.g., inverted lists, Tries as de-
scribed in [5] as well as common index structures with slight modi-
fications. An algorithm considering index structures during evalua-
tion of complex similarity criteria applying the threshold to shortcut
computations during the grouping process is not included here due
to spacial limits. Another important issue not discussed here is the
creation and maintenance, especially in virtual integration scenar-
ios with autonomous source systems. Currently only indexes built
on-the-fly are considered. Furthermore, the development of pred-
icates used in the grouping clause is simplified, because only the
similarity criterion for two attribute values has to be implemented.
However, this approach is limited to certain similarity measures and
pre-defined strategies to build groups. Other grouping techniques
like clustering of non-textual data would require other extensions.

For the context-aware grouping a nested loops approach is ap-
plicable in the general case resulting in anO(n2) time complexity.

However, there are special cases, where an optimization is possi-
ble, e.g if indexes can be used similar to the previous descriptions.
If a linear order for one of the attributes used for grouping is de-
fined, a sliding window approach could be used [2]. the following
section. The proposed approach of context-aware grouping opens
a broad range of applications. The disadvantage is the higher com-
plexity of developing grouping functions. All the tasks of group
membership checking as well as merging and splitting groups are
burden to the implementer. Anyway, we currently focus on this so-
lution because similarity grouping can be implemented on top of
the context-aware grouping, but not vice versa. Furthermore, com-
mon functions could be implemented and packaged as a database
cartridge or extender, as available in current database systems.

4. CONCLUSIONS
In this paper we have presented two extensions to a SQL-like

query language addressing the problem of data reconcilation. The
group-by-context clause provides a mechanism for applying
user-defined functions for grouping purposes. Thegroup-by-
similarity clause is a special case of context aware group-
ing, providing the possibilty to describe similarity of tuples and
and grouping strategies in a more descriptive way. The merging
or reconciliation of the tuples of the identified groups is performed
via aggregation functions. Both features together form a powerful
framework for data reconciliation as part of extended SQL queries
which can be applied in various application scenarios. Addition-
ally, it improves the extensibilty of database systems and could be
utilized in database extenders or cartridges. The presented exten-
sions are implemented as part of our federated query engine for the
FRAQL language.

In the future, we plan to use SQL for implementing grouping
and aggregation functions in order to support a more declarative
way for specifying these functions and to establish a basis for opti-
mizing grouping queries together with queries as part of the func-
tions. A second important task is to utilize the optimization po-
tential during the similarity-based grouping, i.e. an applicable set
of system-defined similarity functions and the according dedicated
index structures. For this purpose the properties and requirements
of UDA and UDG functions have to be specified and taken into
account during query optimization and evaluation.

5. REFERENCES
[1] J. M. Hellerstein, M. Stonebraker, and R. Caccia.

Independent, Open Enterprise Data Integration.IEEE Data
Engineering Bulletin, 22(1):43–49, 1999.

[2] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In Michael J. Carey and Donovan A.
Schneider, editors,Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pages
127–138, San Jose, California, 22–25 May 1995.

[3] K. Sattler and E. Schallehn. A Data Preparation Framework
based on a Multidatabase Language. In M. Adiba, C. Collet,
and B.P. Desai, editors,Proc. of Int. Database Engineering
and Applications Symposium (IDEAS 2001), pages 219–228,
Grenoble, France, 2001. IEEE Computer Society.

[4] E. Schallehn, K. Sattler, and G. Saake. Extensible grouping
and aggregation for data reconciliation. InProc. 4th Int.
Workshop on Engineering Federated Information Systems,
EFIS’01, Berlin, Germany, 2001.To appear.

[5] H. Shang and T. H. Merrett. Tries for approximate string
matching.IEEE Transactions on Knowledge and Data
Engineering, 8(4):540–547, 1996.

